Laplace approximation in high-dimensional Bayesian regression

Rina Foygel Barber, Mathias Drton, Kean Ming Tan

Publikation: Beitrag in Buch/Bericht/KonferenzbandKonferenzbeitragBegutachtung

10 Zitate (Scopus)

Abstract

We consider Bayesian variable selection in sparse high-dimensional regression, where the number of covariates p may be large relative to the sample size n, but at most a moderate number q of covariates are active. Specifically, we treat generalized linear models. For a single fixed sparse model with well-behaved prior distribution, classical theory proves that the Laplace approximation to the marginal likelihood of the model is accurate for sufficiently large sample size n. We extend this theory by giving results on uniform accuracy of the Laplace approximation across all models in a high-dimensional scenario in which p and q, and thus also the number of considered models, may increase with n. Moreover, we show how this connection between marginal likelihood and Laplace approximation can be used to obtain consistency results for Bayesian approaches to variable selection in high-dimensional regression.

OriginalspracheEnglisch
TitelStatistical Analysis for High-Dimensional Data - The Abel Symposium, 2014
Redakteure/-innenPeter Buhlmann, Ingrid K. Glad, Mette Langaas, Sylvia Richardson, Arnoldo Frigessi, Marina Vannucci
Herausgeber (Verlag)Springer Heidelberg
Seiten15-36
Seitenumfang22
ISBN (Print)9783319270975
DOIs
PublikationsstatusVeröffentlicht - 2016
Extern publiziertJa
Veranstaltung11th Abel Symposium on Statistical Analysis for High-Dimensional Data, 2014 - Kabelvag, Norwegen
Dauer: 5 Mai 20149 Mai 2014

Publikationsreihe

NameAbel Symposia
Band11
ISSN (Print)2193-2808
ISSN (elektronisch)2197-8549

Konferenz

Konferenz11th Abel Symposium on Statistical Analysis for High-Dimensional Data, 2014
Land/GebietNorwegen
OrtKabelvag
Zeitraum5/05/149/05/14

Fingerprint

Untersuchen Sie die Forschungsthemen von „Laplace approximation in high-dimensional Bayesian regression“. Zusammen bilden sie einen einzigartigen Fingerprint.

Dieses zitieren