Lane-Level Matching Algorithm Based on GNSS, IMU and Map Data

Julian Kreibich, Frederic Brenner, Markus Lienkamp

Publikation: Beitrag in Buch/Bericht/KonferenzbandKonferenzbeitragBegutachtung

2 Zitate (Scopus)

Abstract

High-precision map services are an indispensable basis of many innovative in-vehicle applications. Safety and comfort can be improved even further by inputting contextual information, such as road surface. Correct allocation requires lane-accurate vehicle localization. This paper presents a novel algorithm for lane-level map-matching that integrates a global navigation satellite system, an inertial measurement unit, and map data. The implemented algorithm consists of five consecutive modules: map generation, sensor-data pre-processing, road assignment, maneuver recognition, and information fusion. The approach was tested over a total distance of 245 km, involving 237 lane changes, within the metropolitan area of Munich. A total accuracy of 82% correctly classified lanes was achieved in test drives recorded with smartphones. Both the implementation and part of the data set of this paper are publicly available (https://github.com/TUMFTM/Lane_Level_Matching).

OriginalspracheEnglisch
Titel2021 8th International Conference on Soft Computing and Machine Intelligence, ISCMI 2021
Herausgeber (Verlag)Institute of Electrical and Electronics Engineers Inc.
Seiten211-218
Seitenumfang8
ISBN (elektronisch)9781728186832
DOIs
PublikationsstatusVeröffentlicht - 2021
Veranstaltung8th International Conference on Soft Computing and Machine Intelligence, ISCMI 2021 - Cairo, Ägypten
Dauer: 26 Nov. 202127 Nov. 2021

Publikationsreihe

Name2021 8th International Conference on Soft Computing and Machine Intelligence, ISCMI 2021

Konferenz

Konferenz8th International Conference on Soft Computing and Machine Intelligence, ISCMI 2021
Land/GebietÄgypten
OrtCairo
Zeitraum26/11/2127/11/21

Fingerprint

Untersuchen Sie die Forschungsthemen von „Lane-Level Matching Algorithm Based on GNSS, IMU and Map Data“. Zusammen bilden sie einen einzigartigen Fingerprint.

Dieses zitieren