Lagrangian schemes for Wasserstein gradient flows

Jose A. Carrillo, Daniel Matthes, Marie Therese Wolfram

Publikation: Beitrag in Buch/Bericht/KonferenzbandKapitelBegutachtung

9 Zitate (Scopus)

Abstract

This chapter reviews different numerical methods for specific examples of Wasserstein gradient flows: we focus on nonlinear Fokker-Planck equations, but also discuss discretizations of the parabolic-elliptic Keller-Segel model and of the fourth order thin film equation. The methods under review are of Lagrangian nature, that is, the numerical approximations trace the characteristics of the underlying transport equation rather than solving the evolution equation for the mass density directly. The two main approaches are based on integrating the equation for the Lagrangian maps on the one hand, and on solution of coupled ODEs for individual mass particles on the other hand.

OriginalspracheEnglisch
TitelGeometric Partial Differential Equations - Part II
Redakteure/-innenAndrea Bonito, Ricardo H. Nochetto
Herausgeber (Verlag)Elsevier B.V.
Seiten271-311
Seitenumfang41
ISBN (Print)9780444643056
DOIs
PublikationsstatusVeröffentlicht - Jan. 2021

Publikationsreihe

NameHandbook of Numerical Analysis
Band22
ISSN (Print)1570-8659

Fingerprint

Untersuchen Sie die Forschungsthemen von „Lagrangian schemes for Wasserstein gradient flows“. Zusammen bilden sie einen einzigartigen Fingerprint.

Dieses zitieren