L3DG: Latent 3D Gaussian Diffusion

Barbara Roessle, Norman Müller, Lorenzo Porzi, Samuel Rota Bulò, Peter Kontschieder, Angela Dai, Matthias Niessner

Publikation: Beitrag in Buch/Bericht/KonferenzbandKonferenzbeitragBegutachtung

Abstract

We propose L3DG, the first approach for generative 3D modeling of 3D Gaussians through a latent 3D Gaussian diffusion formulation. This enables effective generative 3D modeling, scaling to generation of entire room-scale scenes which can be very efficiently rendered. To enable effective synthesis of 3D Gaussians, we propose a latent diffusion formulation, operating in a compressed latent space of 3D Gaussians. This compressed latent space is learned by a vector-quantized variational autoencoder (VQ-VAE), for which we employ a sparse convolutional architecture to efficiently operate on room-scale scenes. This way, the complexity of the costly generation process via diffusion is substantially reduced, allowing higher detail on object-level generation, as well as scalability to large scenes. By leveraging the 3D Gaussian representation, the generated scenes can be rendered from arbitrary viewpoints in real-time. We demonstrate that our approach significantly improves visual quality over prior work on unconditional object-level radiance field synthesis and showcase its applicability to room-scale scene generation.

OriginalspracheEnglisch
TitelProceedings - SIGGRAPH Asia 2024 Conference Papers, SA 2024
Redakteure/-innenStephen N. Spencer
Herausgeber (Verlag)Association for Computing Machinery, Inc
ISBN (elektronisch)9798400711312
DOIs
PublikationsstatusVeröffentlicht - 3 Dez. 2024
Veranstaltung2024 SIGGRAPH Asia 2024 Conference Papers, SA 2024 - Tokyo, Japan
Dauer: 3 Dez. 20246 Dez. 2024

Publikationsreihe

NameProceedings - SIGGRAPH Asia 2024 Conference Papers, SA 2024

Konferenz

Konferenz2024 SIGGRAPH Asia 2024 Conference Papers, SA 2024
Land/GebietJapan
OrtTokyo
Zeitraum3/12/246/12/24

Fingerprint

Untersuchen Sie die Forschungsthemen von „L3DG: Latent 3D Gaussian Diffusion“. Zusammen bilden sie einen einzigartigen Fingerprint.

Dieses zitieren