KO-fusion: Dense visual SLAM with tightly-coupled kinematic and odometric tracking

Charlie Houseago, Michael Bloesch, Stefan Leutenegger

Publikation: Beitrag in Buch/Bericht/KonferenzbandKonferenzbeitragBegutachtung

18 Zitate (Scopus)

Abstract

Dense visual SLAM methods are able to estimate the 3D structure of an environment and locate the observer within them. They estimate the motion of a camera by matching visual information between consecutive frames, and are thus prone to failure under extreme motion conditions or when observing texture-poor regions. The integration of additional sensor modalities has shown great promise in improving the robustness and accuracy of such SLAM systems. In contrast to the popular use of inertial measurements we propose to tightly-couple a dense RGB-D SLAM system with kinematic and odometry measurements from a wheeled robot equipped with a manipulator. The system has real-time capability while running on GPU. It optimizes the camera pose by considering the geometric alignment of the map as well as kinematic and odometric data from the robot. Through experimentation in the real-world, we show that the system is more robust to challenging trajectories featuring fast and loopy motion than the equivalent system without the additional kinematic and odometric knowledge, whilst retaining comparable performance to the equivalent RGB-D only system on easy trajectories.

OriginalspracheEnglisch
Titel2019 International Conference on Robotics and Automation, ICRA 2019
Herausgeber (Verlag)Institute of Electrical and Electronics Engineers Inc.
Seiten4054-4060
Seitenumfang7
ISBN (elektronisch)9781538660263
DOIs
PublikationsstatusVeröffentlicht - Mai 2019
Extern publiziertJa
Veranstaltung2019 International Conference on Robotics and Automation, ICRA 2019 - Montreal, Kanada
Dauer: 20 Mai 201924 Mai 2019

Publikationsreihe

NameProceedings - IEEE International Conference on Robotics and Automation
ISSN (Print)1050-4729

Konferenz

Konferenz2019 International Conference on Robotics and Automation, ICRA 2019
Land/GebietKanada
OrtMontreal
Zeitraum20/05/1924/05/19

Fingerprint

Untersuchen Sie die Forschungsthemen von „KO-fusion: Dense visual SLAM with tightly-coupled kinematic and odometric tracking“. Zusammen bilden sie einen einzigartigen Fingerprint.

Dieses zitieren