Keyword spotting exploiting Long Short-Term Memory

Publikation: Beitrag in FachzeitschriftArtikelBegutachtung

41 Zitate (Scopus)

Abstract

We investigate various techniques for keyword spotting which are exclusively based on acoustic modeling and do not presume the existence of an in-domain language model. Since adequate context modeling is nevertheless necessary for word spotting, we show how the principle of Long Short-Term Memory (LSTM) can be incorporated into the decoding process. We propose a novel technique that exploits LSTM in combination with Connectionist Temporal Classification in order to improve performance by using a self-learned amount of contextual information. All considered approaches are evaluated on read speech as contained in the TIMIT corpus as well as on the SEMAINE database which consists of spontaneous and emotionally colored speech. As further evidence for the effectiveness of LSTM modeling for keyword spotting, results on the CHiME task are shown.

OriginalspracheEnglisch
Seiten (von - bis)252-265
Seitenumfang14
FachzeitschriftSpeech Communication
Jahrgang55
Ausgabenummer2
DOIs
PublikationsstatusVeröffentlicht - Feb. 2013

Fingerprint

Untersuchen Sie die Forschungsthemen von „Keyword spotting exploiting Long Short-Term Memory“. Zusammen bilden sie einen einzigartigen Fingerprint.

Dieses zitieren