Kernel density estimation and intrinsic alignment for knowledge-driven segmentation: teaching level sets to walk

Daniel Cremers, Stanley J. Osher, Stefano Soatto

Publikation: Beitrag in Buch/Bericht/KonferenzbandKapitelBegutachtung

46 Zitate (Scopus)

Abstract

We address the problem of image segmentation with statistical shape priors in the context of the level set framework. Our paper makes two contributions: Firstly, we propose a novel multi-modal statistical shape prior which allows to encode multiple fairly distinct training shapes. This prior is based on an extension of classical kernel density estimators to the level set domain. Secondly, we propose an intrinsic registration of the evolving level set function which induces an invariance of the proposed shape energy with respect to translation. We demonstrate the advantages of this multi-modal shape prior applied to the segmentation and tracking of a partially occluded walking person.

OriginalspracheEnglisch
TitelLecture Notes in Computer Science (including subseries Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics)
Redakteure/-innenCarl Edward Rasmussen, Heinrich H. Bulthoff, Bernhard Scholkopf, Martin A. Giese
Herausgeber (Verlag)Springer Verlag
Seiten36-44
Seitenumfang9
ISBN (Print)3540229450, 9783540229452
DOIs
PublikationsstatusVeröffentlicht - 2004
Extern publiziertJa

Publikationsreihe

NameLecture Notes in Computer Science (including subseries Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics)
Band3175
ISSN (Print)0302-9743
ISSN (elektronisch)1611-3349

Fingerprint

Untersuchen Sie die Forschungsthemen von „Kernel density estimation and intrinsic alignment for knowledge-driven segmentation: teaching level sets to walk“. Zusammen bilden sie einen einzigartigen Fingerprint.

Dieses zitieren