KAPETÁNIOS: Automated Kubernetes Adaptation through a Digital Twin

Johannes Zerwas, Patrick Krämer, Rǎzvan Mihai Ursu, Navidreza Asadi, Phil Rodgers, Leon Wong, Wolfgang Kellerer

Publikation: Beitrag in Buch/Bericht/KonferenzbandKonferenzbeitragBegutachtung

4 Zitate (Scopus)

Abstract

This demo presents a self-operating Kubernetes (K8s) cluster that uses digital twinning and machine learning to autonomously adapt its Horizontal Pod Autoscaler (HPA) to workload changes. The demo uses a digital twin of a K8s cluster to gather performance statistics and learn a model for the workload. With the model, the cluster autonomously adjusts HPA parameters for better performance. The demo illustrates this process and shows that the requested pod seconds decrease by 37 %, while the request latency stays mostly unaffected.

OriginalspracheEnglisch
TitelProceedings of the 2022 13th International Conference on the Network of the Future, NoF 2022
Redakteure/-innenTim Wautres, Maurice Khabbaz, Federica Paganelli, Filip Idzikowski, Zuqing Zhu
Herausgeber (Verlag)Institute of Electrical and Electronics Engineers Inc.
ISBN (elektronisch)9781665472548
DOIs
PublikationsstatusVeröffentlicht - 2022
Veranstaltung13th International Conference on the Network of the Future, NoF 2022 - Ghent, Belgien
Dauer: 5 Okt. 20227 Okt. 2022

Publikationsreihe

NameProceedings of the 2022 13th International Conference on the Network of the Future, NoF 2022

Konferenz

Konferenz13th International Conference on the Network of the Future, NoF 2022
Land/GebietBelgien
OrtGhent
Zeitraum5/10/227/10/22

Fingerprint

Untersuchen Sie die Forschungsthemen von „KAPETÁNIOS: Automated Kubernetes Adaptation through a Digital Twin“. Zusammen bilden sie einen einzigartigen Fingerprint.

Dieses zitieren