Joint thrombus and vessel segmentation using dynamic texture likelihoods and shape prior

Nicolas Brieu, Martin Groher, Jovana Serbanovic-Canic, Ana Cvejic, Willem Ouwehand, Nassir Navab

Publikation: Beitrag in Buch/Bericht/KonferenzbandKonferenzbeitragBegutachtung

2 Zitate (Scopus)

Abstract

The segmentation of thrombus and vessel in microscopic image sequences is of high interest for identifying genes linked to cardiovascular diseases. This task is however challenging because of the low contrast and the highly dynamic conditions observed in time-lapse DIC in-vivo microscopic scenes. In this work, we introduce a probabilistic framework for the joint segmentation of thrombus and vessel regions. Modeling the scene with dynamic textures, we derive two likelihood functions to account for both spatial and temporal discrepancies of the motion patterns. A tubular shape prior is moreover introduced to constrain the aortic region. Extensive experiments on microscopic sequences quantitatively show the good performance of our approach.

OriginalspracheEnglisch
TitelMedical Image Computing and Computer-Assisted Intervention, MICCAI 2011 - 14th International Conference, Proceedings
Seiten579-586
Seitenumfang8
AuflagePART 3
DOIs
PublikationsstatusVeröffentlicht - 2011
Veranstaltung14th International Conference on Medical Image Computing and Computer Assisted Intervention, MICCAI 2011 - Toronto, ON, Kanada
Dauer: 18 Sept. 201122 Sept. 2011

Publikationsreihe

NameLecture Notes in Computer Science (including subseries Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics)
NummerPART 3
Band6893 LNCS
ISSN (Print)0302-9743
ISSN (elektronisch)1611-3349

Konferenz

Konferenz14th International Conference on Medical Image Computing and Computer Assisted Intervention, MICCAI 2011
Land/GebietKanada
OrtToronto, ON
Zeitraum18/09/1122/09/11

Fingerprint

Untersuchen Sie die Forschungsthemen von „Joint thrombus and vessel segmentation using dynamic texture likelihoods and shape prior“. Zusammen bilden sie einen einzigartigen Fingerprint.

Dieses zitieren