JAX-based Gray-Box Modeling Framework for Hybrid Thermal Building Models

Felix Sievers, Dirk Hartmann, Felix Dietrich, Hermann Mayer, Hans Joachim Bungartz

Publikation: Beitrag in FachzeitschriftKonferenzartikelBegutachtung

Abstract

Modeling the thermal dynamics of buildings is crucial for effectively controlling HVAC systems. However, the realization of corresponding models can be quite cumbersome, identifying multi-zone systems algorithms for gray-box models can be quite complex and machine learning methods require large amounts of data. Therefore, we propose a hybrid approach that combines fully observable gray-box models with a neural network corrector. In this study, we present a multi-zone modeling approach that uses a JAX-based gray-box modeling framework and validate it using an EnergyPlus simulation. In the second part of our research, we examine the data requirements of this method. For the purpose of comparison and explainability, we test our method on four different fully observable state space models. We demonstrate that gray-box modeling, when combined with a corrector term, can lead to highly general and explainable multi-zone thermal building models.

OriginalspracheEnglisch
Seiten (von - bis)3385-3392
Seitenumfang8
FachzeitschriftBuilding Simulation Conference Proceedings
Jahrgang18
DOIs
PublikationsstatusVeröffentlicht - 2023
Veranstaltung18th IBPSA Conference on Building Simulation, BS 2023 - Shanghai, China
Dauer: 4 Sept. 20236 Sept. 2023

Fingerprint

Untersuchen Sie die Forschungsthemen von „JAX-based Gray-Box Modeling Framework for Hybrid Thermal Building Models“. Zusammen bilden sie einen einzigartigen Fingerprint.

Dieses zitieren