Jacta: A Versatile Planner for Learning Dexterous and Whole-body Manipulation

Jan Brüdigam, Ali Adeeb Abbas, Maks Sorokin, Kuan Fang, Brandon Hung, Maya Guru, Stefan Sosnowski, Jiuguang Wang, Sandra Hirche, Simon Le Cleac'H

Publikation: Beitrag in FachzeitschriftKonferenzartikelBegutachtung

Abstract

Robotic manipulation is challenging due to discontinuous dynamics, as well as high-dimensional state and action spaces. Data-driven approaches that succeed in manipulation tasks require large amounts of data and expert demonstrations, typically from humans. Existing planners are restricted to specific systems and often depend on specialized algorithms for using demonstrations. Therefore, we introduce a flexible motion planner tailored to dexterous and whole-body manipulation tasks. Our planner creates readily usable demonstrations for reinforcement learning algorithms, eliminating the need for additional training pipeline complexities. With this approach, we can efficiently learn policies for complex manipulation tasks, where traditional reinforcement learning alone only makes little progress. Furthermore, we demonstrate that learned policies are transferable to real robotic systems for solving complex dexterous manipulation tasks. Project website: https://jacta-manipulation.github.io/.

OriginalspracheEnglisch
Seiten (von - bis)994-1020
Seitenumfang27
FachzeitschriftProceedings of Machine Learning Research
Jahrgang270
PublikationsstatusVeröffentlicht - 2024
Veranstaltung8th Conference on Robot Learning, CoRL 2024 - Munich, Deutschland
Dauer: 6 Nov. 20249 Nov. 2024

Fingerprint

Untersuchen Sie die Forschungsthemen von „Jacta: A Versatile Planner for Learning Dexterous and Whole-body Manipulation“. Zusammen bilden sie einen einzigartigen Fingerprint.

Dieses zitieren