Iterative Visual Interaction with Latent Diffusion Models

Luca Sacchetto, Stefan Röhrl, Klaus Diepold

Publikation: Beitrag in Buch/Bericht/KonferenzbandKonferenzbeitragBegutachtung

Abstract

Image synthesis generative Artificial Intelligence has the potential to revolutionize many industries, from rapid prototyping of consumer goods’ design to creating works of art. However, the most widespread of these models come in the form of text-to-image models. Controlling their output is often a difficult and imprecise process; indeed, slightly different prompts can lead to significantly different outcomes. Therefore, we develop a novel way to interact with generative AI that mimics the way in which humans naturally create works of art and design. We achieve this more granular and intuitive interaction method by exploiting the latent space of Latent Diffusion Models to generate image variations.

OriginalspracheEnglisch
TitelArtificial Intelligence in HCI - 5th International Conference, AI-HCI 2024, Held as Part of the 26th HCI International Conference, HCII 2024, Proceedings
Redakteure/-innenHelmut Degen, Stavroula Ntoa
Herausgeber (Verlag)Springer Science and Business Media Deutschland GmbH
Seiten411-421
Seitenumfang11
ISBN (Print)9783031606052
DOIs
PublikationsstatusVeröffentlicht - 2024
Veranstaltung5th International Conference on Artificial Intelligence in HCI, AI-HCI 2024, held as part of the 26th HCI International Conference, HCII 2024 - Washington, USA/Vereinigte Staaten
Dauer: 29 Juni 20244 Juli 2024

Publikationsreihe

NameLecture Notes in Computer Science (including subseries Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics)
Band14734 LNAI
ISSN (Print)0302-9743
ISSN (elektronisch)1611-3349

Konferenz

Konferenz5th International Conference on Artificial Intelligence in HCI, AI-HCI 2024, held as part of the 26th HCI International Conference, HCII 2024
Land/GebietUSA/Vereinigte Staaten
OrtWashington
Zeitraum29/06/244/07/24

Fingerprint

Untersuchen Sie die Forschungsthemen von „Iterative Visual Interaction with Latent Diffusion Models“. Zusammen bilden sie einen einzigartigen Fingerprint.

Dieses zitieren