Iterative detection based on reduced-rank equalization

Guido Dietl, Christian Mensing, Wolfgang Utschick

Publikation: Beitrag in FachzeitschriftKonferenzartikelBegutachtung

7 Zitate (Scopus)

Abstract

In this paper, we consider an iterative or turbo receiver with linear detection using the Wiener Filter (WF), i.e. the optimal linear filter based on the Mean Square Error (MSE) criterion. Multiple antennas at the receiver increase the dimension of the observation vector which results in computational intense detectors. We extend an optimal hut computational efficient algorithm, originally derived for a single receive antenna, to Single-Input Multiple-Output (SIMO) channels. To further reduce computational complexity, we apply the suboptimal low-rank Multi-Stage Wiener Fitter (MSWF) and approximate additionally second order statistics of non-stationary random processes by their time-invariant averages. Complexity investigations reveal the enormous capability of the proposed algorithms to decrease computational effort. Moreover, simulation results show that the reduced-rank MSWF behave near optimum although the rank is drastically reduced to two or even one.

OriginalspracheEnglisch
Seiten (von - bis)1533-1537
Seitenumfang5
FachzeitschriftIEEE Vehicular Technology Conference
Jahrgang60
Ausgabenummer3
PublikationsstatusVeröffentlicht - 2004
Veranstaltung2004 IEEE 60th Vehicular Technology Conference, VTC2004-Fall: Wireless Technologies for Global Security - Los Angeles, CA, USA/Vereinigte Staaten
Dauer: 26 Sept. 200429 Sept. 2004

Fingerprint

Untersuchen Sie die Forschungsthemen von „Iterative detection based on reduced-rank equalization“. Zusammen bilden sie einen einzigartigen Fingerprint.

Dieses zitieren