IPAS: Intelligent protection against silent output corruption in scientific applications

Ignacio Laguna, Martin Schulz, David F. Richards, Jon Calhoun, Luke Olson

Publikation: Beitrag in Buch/Bericht/KonferenzbandKonferenzbeitragBegutachtung

71 Zitate (Scopus)

Abstract

This paper presents IPAS, an instruction duplication technique that protects scientific applications from silent data corruption (SDC) in their output. The motivation for IPAS is that, due to natural error masking, only a subset of SDC errors actually affects the output of scientific codes-we call these errors silent output corruption (SOC) errors. Thus applications require duplication only on code that, when affected by a fault, yields SOC. We use machine learning to learn code instructions that must be protected to avoid SOC, and, using a compiler, we protect only those vulnerable instructions by duplication, thus significantly reducing the overhead that is introduced by instruction duplication. In our experiments with five workloads, IPAS reduces the percentage of SOC by up to 90% with a slowdown that ranges between 1.04× and 1.35×, which corresponds to as much as 47% less slowdown than state-of-the-art instruction duplication techniques.

OriginalspracheEnglisch
TitelProceedings of the 14th International Symposium on Code Generation and Optimization, CGO 2016
Herausgeber (Verlag)Association for Computing Machinery, Inc
Seiten227-238
Seitenumfang12
ISBN (elektronisch)9781450337786
DOIs
PublikationsstatusVeröffentlicht - 29 Feb. 2016
Extern publiziertJa
Veranstaltung14th Annual IEEE/ACM International Symposium on Code Generation and Optimization, CGO 2016 - Barcelona, Spanien
Dauer: 12 März 201618 März 2016

Publikationsreihe

NameProceedings of the 14th International Symposium on Code Generation and Optimization, CGO 2016

Konferenz

Konferenz14th Annual IEEE/ACM International Symposium on Code Generation and Optimization, CGO 2016
Land/GebietSpanien
OrtBarcelona
Zeitraum12/03/1618/03/16

Fingerprint

Untersuchen Sie die Forschungsthemen von „IPAS: Intelligent protection against silent output corruption in scientific applications“. Zusammen bilden sie einen einzigartigen Fingerprint.

Dieses zitieren