Investigation on misclassification of pedestrians as poles by simulation

Christian Rudolf Albrecht, Daniel Nevir, Arne Christoph Hildebrandt, Sven Kraus, Uwe Stilla

Publikation: Beitrag in Buch/Bericht/KonferenzbandKonferenzbeitragBegutachtung

1 Zitat (Scopus)

Abstract

High-precision self-localization is one of the most important capabilities of automated vehicles. Not only accuracy but also localization robustness are crucial for self-driving vehicles in urban environments. The localization robustness decreases by misclassifications of landmarks and therefore false matches between dynamic objects and static landmarks listed in an a priori map. Here we show in the CARLA simulation environment, that the usage of semantic information prevents misclassifications of pedestrians as poles and so increases robustness in urban scenarios. In a simulated scenario of a road intersection pedestrians misclassified without semantic information could be filtered out by class label. In the presented experiments no mismatches of dynamic objects and map landmarks occurred and therefore the localization robustness was increased. Not only pole-like dynamic objects but also semi-static objects like parking cars or freight containers in terminal applications can be detected and excluded from map-based position estimation. The findings of this work show that the introduction of semantic class information leads to a higher self-localization robustness in urban scenarios and therefore should be included into current localization methods.

OriginalspracheEnglisch
Titel32nd IEEE Intelligent Vehicles Symposium, IV 2021
Herausgeber (Verlag)Institute of Electrical and Electronics Engineers Inc.
Seiten804-809
Seitenumfang6
ISBN (elektronisch)9781728153940
DOIs
PublikationsstatusVeröffentlicht - 11 Juli 2021
Veranstaltung32nd IEEE Intelligent Vehicles Symposium, IV 2021 - Nagoya, Japan
Dauer: 11 Juli 202117 Juli 2021

Publikationsreihe

NameIEEE Intelligent Vehicles Symposium, Proceedings
Band2021-July

Konferenz

Konferenz32nd IEEE Intelligent Vehicles Symposium, IV 2021
Land/GebietJapan
OrtNagoya
Zeitraum11/07/2117/07/21

Fingerprint

Untersuchen Sie die Forschungsthemen von „Investigation on misclassification of pedestrians as poles by simulation“. Zusammen bilden sie einen einzigartigen Fingerprint.

Dieses zitieren