Abstract
We prove the following result: If G is a finite irreducible reflection group defined over a base field k, then the invariant field of G is purely transcendental over k, even if |G| is divisible by the characteristic of k. It is well known that in the above situation the invariant ring is in general not a polynomial ring. So the question whether at least the invariant field is purely transcendental (Noether's problem) is quite natural.
Originalsprache | Englisch |
---|---|
Seiten (von - bis) | 569-586 |
Seitenumfang | 18 |
Fachzeitschrift | Mathematische Annalen |
Jahrgang | 315 |
Ausgabenummer | 4 |
DOIs | |
Publikationsstatus | Veröffentlicht - Dez. 1999 |
Extern publiziert | Ja |