Introspective Robot Perception Using Smoothed Predictions from Bayesian Neural Networks

Jianxiang Feng, Maximilian Durner, Zoltán Csaba Márton, Ferenc Bálint-Benczédi, Rudolph Triebel

Publikation: Beitrag in Buch/Bericht/KonferenzbandKonferenzbeitragBegutachtung

2 Zitate (Scopus)

Abstract

This work focuses on improving uncertainty estimation in the field of object classification from RGB images and demonstrates its benefits in two robotic applications. We employ a Bayesian Neural Network (BNN), and evaluate two practical inference techniques to obtain better uncertainty estimates, namely Concrete Dropout (CDP) and Kronecker-factored Laplace Approximation (LAP). We show a performance increase using more reliable uncertainty estimates as unary potentials within a Conditional Random Field (CRF), which is able to incorporate contextual information as well. Furthermore, the obtained uncertainties are exploited to achieve domain adaptation in a semi-supervised manner, which requires less manual efforts in annotating data. We evaluate our approach on two public benchmark datasets that are relevant for robot perception tasks.

OriginalspracheEnglisch
TitelRobotics Research - The 19th International Symposium ISRR
Redakteure/-innenTamim Asfour, Eiichi Yoshida, Jaeheung Park, Henrik Christensen, Oussama Khatib
Herausgeber (Verlag)Springer Nature
Seiten660-675
Seitenumfang16
ISBN (Print)9783030954581
DOIs
PublikationsstatusVeröffentlicht - 2022
Veranstaltung17th International Symposium of Robotics Research, ISRR 2019 - Hanoi, Vietnam
Dauer: 6 Okt. 201910 Okt. 2019

Publikationsreihe

NameSpringer Proceedings in Advanced Robotics
Band20 SPAR
ISSN (Print)2511-1256
ISSN (elektronisch)2511-1264

Konferenz

Konferenz17th International Symposium of Robotics Research, ISRR 2019
Land/GebietVietnam
OrtHanoi
Zeitraum6/10/1910/10/19

Fingerprint

Untersuchen Sie die Forschungsthemen von „Introspective Robot Perception Using Smoothed Predictions from Bayesian Neural Networks“. Zusammen bilden sie einen einzigartigen Fingerprint.

Dieses zitieren