Introducing total curvature for image processing

Bastian Goldluecke, Daniel Cremers

Publikation: Beitrag in Buch/Bericht/KonferenzbandKonferenzbeitragBegutachtung

35 Zitate (Scopus)

Abstract

We introduce the novel continuous regularizer total curvature (TC) for images u: Ω → ℝ. It is defined as the Menger-Melnikov curvature of the Radon measure |Du|, which can be understood as a measure theoretic formulation of curvature mathematically related to mean curvature. The functional is not convex, therefore we define a convex relaxation which yields a close approximation. Similar to the total variation, the relaxation can be written as the support functional of a convex set, which means that there are stable and efficient minimization algorithms available when it is used as a regularizer in image processing problems. Our current implementation can handle general inverse problems, inpainting and segmentation. We demonstrate in experiments and comparisons how the regularizer performs in practice.

OriginalspracheEnglisch
Titel2011 International Conference on Computer Vision, ICCV 2011
Seiten1267-1274
Seitenumfang8
DOIs
PublikationsstatusVeröffentlicht - 2011
Veranstaltung2011 IEEE International Conference on Computer Vision, ICCV 2011 - Barcelona, Spanien
Dauer: 6 Nov. 201113 Nov. 2011

Publikationsreihe

NameProceedings of the IEEE International Conference on Computer Vision

Konferenz

Konferenz2011 IEEE International Conference on Computer Vision, ICCV 2011
Land/GebietSpanien
OrtBarcelona
Zeitraum6/11/1113/11/11

Fingerprint

Untersuchen Sie die Forschungsthemen von „Introducing total curvature for image processing“. Zusammen bilden sie einen einzigartigen Fingerprint.

Dieses zitieren