TY - JOUR
T1 - Introducing catalysis in photocatalysis
T2 - What can be understood from surface science studies of alcohol photoreforming on TiO2
AU - Walenta, Constantin A.
AU - Tschurl, Martin
AU - Heiz, Ueli
N1 - Publisher Copyright:
© 2019 IOP Publishing Ltd.
PY - 2019/8/23
Y1 - 2019/8/23
N2 - Mechanisms in heterogeneous photocatalysis have traditionally been interpreted by the band-structure model and analogously to electrochemistry. This has led to the establishment of 'band-engineering' as a leading principle for the discovery of more efficient photocatalysts. In such a picture, mainly thermodynamic aspects are taken into account, while kinetics are often ignored. This holds in particular for chemical kinetics, which are, other than those for charge carrier dynamics, often not at all considered for the interpretation of the catalysts' photocatalytic performance. However, while being usually neglected in photocatalyis, they are a traditional and powerful tool in thermal catalysis and are still applied with great success in this field. While surface science studies made substantial contributes to thermal catalysis, analogous studies in heterogeneous photocatalysis still play only a minor role. In this review, the authors show that the photo-physics of defined materials in well-defined environments can be correlated with photochemical events on a surface, highlighting the importance of well-characterized semiconductors for the interpretation of mechanisms in heterogeneous photochemistry. The work focuses on contributions from surface science, which were obtained for the model system of a titania single crystal and alcohol photo-reforming. It is demonstrated that only surface science studies have so far enabled the elucidation of molecularly precise reaction mechanisms, the determination of reaction intermediates and assignment of reactive sites. As the identification of these properties remain major prerequisites for a breakthrough in photocatalysis research, the work also discusses the implications of the findings for applied systems. In general, the results from surface science demonstrate that photocatalytic systems shall also be approached by a perspective originating from heterogeneous catalysis rather than solely from an electrochemical point of view.
AB - Mechanisms in heterogeneous photocatalysis have traditionally been interpreted by the band-structure model and analogously to electrochemistry. This has led to the establishment of 'band-engineering' as a leading principle for the discovery of more efficient photocatalysts. In such a picture, mainly thermodynamic aspects are taken into account, while kinetics are often ignored. This holds in particular for chemical kinetics, which are, other than those for charge carrier dynamics, often not at all considered for the interpretation of the catalysts' photocatalytic performance. However, while being usually neglected in photocatalyis, they are a traditional and powerful tool in thermal catalysis and are still applied with great success in this field. While surface science studies made substantial contributes to thermal catalysis, analogous studies in heterogeneous photocatalysis still play only a minor role. In this review, the authors show that the photo-physics of defined materials in well-defined environments can be correlated with photochemical events on a surface, highlighting the importance of well-characterized semiconductors for the interpretation of mechanisms in heterogeneous photochemistry. The work focuses on contributions from surface science, which were obtained for the model system of a titania single crystal and alcohol photo-reforming. It is demonstrated that only surface science studies have so far enabled the elucidation of molecularly precise reaction mechanisms, the determination of reaction intermediates and assignment of reactive sites. As the identification of these properties remain major prerequisites for a breakthrough in photocatalysis research, the work also discusses the implications of the findings for applied systems. In general, the results from surface science demonstrate that photocatalytic systems shall also be approached by a perspective originating from heterogeneous catalysis rather than solely from an electrochemical point of view.
KW - hydrogen evolution
KW - photocatalysis
KW - solar fuels
KW - TiO
UR - http://www.scopus.com/inward/record.url?scp=85071785748&partnerID=8YFLogxK
U2 - 10.1088/1361-648X/ab351a
DO - 10.1088/1361-648X/ab351a
M3 - Review article
C2 - 31342942
AN - SCOPUS:85071785748
SN - 0953-8984
VL - 31
JO - Journal of Physics Condensed Matter
JF - Journal of Physics Condensed Matter
IS - 47
M1 - 473002
ER -