Intrinsic Neural Fields: Learning Functions on Manifolds

Lukas Koestler, Daniel Grittner, Michael Moeller, Daniel Cremers, Zorah Lähner

Publikation: Beitrag in Buch/Bericht/KonferenzbandKonferenzbeitragBegutachtung

12 Zitate (Scopus)

Abstract

Neural fields have gained significant attention in the computer vision community due to their excellent performance in novel view synthesis, geometry reconstruction, and generative modeling. Some of their advantages are a sound theoretic foundation and an easy implementation in current deep learning frameworks. While neural fields have been applied to signals on manifolds, e.g., for texture reconstruction, their representation has been limited to extrinsically embedding the shape into Euclidean space. The extrinsic embedding ignores known intrinsic manifold properties and is inflexible wrt. Transfer of the learned function. To overcome these limitations, this work introduces intrinsic neural fields, a novel and versatile representation for neural fields on manifolds. Intrinsic neural fields combine the advantages of neural fields with the spectral properties of the Laplace-Beltrami operator. We show theoretically that intrinsic neural fields inherit many desirable properties of the extrinsic neural field framework but exhibit additional intrinsic qualities, like isometry invariance. In experiments, we show intrinsic neural fields can reconstruct high-fidelity textures from images with state-of-the-art quality and are robust to the discretization of the underlying manifold. We demonstrate the versatility of intrinsic neural fields by tackling various applications: texture transfer between deformed shapes & different shapes, texture reconstruction from real-world images with view dependence, and discretization-agnostic learning on meshes and point clouds.

OriginalspracheEnglisch
TitelComputer Vision – ECCV 2022 - 17th European Conference, Proceedings
Redakteure/-innenShai Avidan, Gabriel Brostow, Moustapha Cissé, Giovanni Maria Farinella, Tal Hassner
Herausgeber (Verlag)Springer Science and Business Media Deutschland GmbH
Seiten622-639
Seitenumfang18
ISBN (Print)9783031200854
DOIs
PublikationsstatusVeröffentlicht - 2022
Veranstaltung17th European Conference on Computer Vision, ECCV 2022 - Tel Aviv, Israel
Dauer: 23 Okt. 202227 Okt. 2022

Publikationsreihe

NameLecture Notes in Computer Science (including subseries Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics)
Band13662 LNCS
ISSN (Print)0302-9743
ISSN (elektronisch)1611-3349

Konferenz

Konferenz17th European Conference on Computer Vision, ECCV 2022
Land/GebietIsrael
OrtTel Aviv
Zeitraum23/10/2227/10/22

Fingerprint

Untersuchen Sie die Forschungsthemen von „Intrinsic Neural Fields: Learning Functions on Manifolds“. Zusammen bilden sie einen einzigartigen Fingerprint.

Dieses zitieren