Interprocedurally analysing linear inequality relations

Helmut Seidl, Andrea Flexeder, Michael Petter

Publikation: Beitrag in Buch/Bericht/KonferenzbandKonferenzbeitragBegutachtung

6 Zitate (Scopus)

Abstract

In this paper we present an alternative approach to interprocedurally inferring linear inequality relations. We propose an abstraction of the effects of procedures through convex sets of transition matrices. In the absence of conditional branching, this abstraction can be characterised precisely by means of the least solution of a constraint system. In order to handle conditionals, we introduce auxiliary variables and postpone checking them until after the procedure calls. In order to obtain an effective analysis, we approximate convex sets by means of polyhedra. Since our implementation of function composition uses the frame representation of polyhedra, we rely on the subclass of simplices to obtain an efficient implementation. We show that for this abstraction the basic operations can be implemented in polynomial time. First practical experiments indicate that the resulting analysis is quite efficient and provides reasonably precise results.

OriginalspracheEnglisch
TitelProgramming Languages and Systems - 16th European Symposium on Programming, ESOP 2007. Held as Part of the Joint European Conferences on Theory and Practics of Software, ETAPS 2007, Proceedings
Herausgeber (Verlag)Springer Verlag
Seiten284-299
Seitenumfang16
ISBN (Print)354071314X, 9783540713142
DOIs
PublikationsstatusVeröffentlicht - 2007
Veranstaltung16th European Symposium on Programming, ESOP 2007 - PRT, Portugal
Dauer: 24 März 20071 Apr. 2007

Publikationsreihe

NameLecture Notes in Computer Science (including subseries Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics)
Band4421 LNCS
ISSN (Print)0302-9743
ISSN (elektronisch)1611-3349

Konferenz

Konferenz16th European Symposium on Programming, ESOP 2007
Land/GebietPortugal
OrtPRT
Zeitraum24/03/071/04/07

Fingerprint

Untersuchen Sie die Forschungsthemen von „Interprocedurally analysing linear inequality relations“. Zusammen bilden sie einen einzigartigen Fingerprint.

Dieses zitieren