Interpretable Early Prediction of Lane Changes Using a Constrained Neural Network Architecture

Oliver Gallitz, Oliver De Candido, Michael Botsch, Wolfgang Utschick

Publikation: Beitrag in Buch/Bericht/KonferenzbandKonferenzbeitragBegutachtung

1 Zitat (Scopus)

Abstract

This paper proposes an interpretable machine learning structure for the early prediction of lane changes. The interpretability relies on interpretable templates, as well as constrained weights during the training process of a neural network. It is shown, that each template is separable and interpretable by means of automatically generated rule sets. For the validation of the proposed method, a publicly available dataset is used. The architecture is compared to reference publications that apply recurrent neural networks to the task of lane change prediction. The proposed method significantly improves the maximum prediction time of the lane changes while keeping low false alarm rates.

OriginalspracheEnglisch
Titel2021 IEEE International Intelligent Transportation Systems Conference, ITSC 2021
Herausgeber (Verlag)Institute of Electrical and Electronics Engineers Inc.
Seiten493-499
Seitenumfang7
ISBN (elektronisch)9781728191423
DOIs
PublikationsstatusVeröffentlicht - 19 Sept. 2021
Veranstaltung2021 IEEE International Intelligent Transportation Systems Conference, ITSC 2021 - Indianapolis, USA/Vereinigte Staaten
Dauer: 19 Sept. 202122 Sept. 2021

Publikationsreihe

NameIEEE Conference on Intelligent Transportation Systems, Proceedings, ITSC
Band2021-September

Konferenz

Konferenz2021 IEEE International Intelligent Transportation Systems Conference, ITSC 2021
Land/GebietUSA/Vereinigte Staaten
OrtIndianapolis
Zeitraum19/09/2122/09/21

Fingerprint

Untersuchen Sie die Forschungsthemen von „Interpretable Early Prediction of Lane Changes Using a Constrained Neural Network Architecture“. Zusammen bilden sie einen einzigartigen Fingerprint.

Dieses zitieren