TY - GEN
T1 - Internal structures of scaffold-free 3D cell cultures visualized by synchrotron radiation-based micro-computed tomography
AU - Saldamli, Belma
AU - Herzen, Julia
AU - Beckmann, Felix
AU - Tübel, Jutta
AU - Schauwecker, Johannes
AU - Burgkart, Rainer
AU - Jürgens, Philipp
AU - Zeilhofer, Hans Florian
AU - Sader, Robert
AU - Müller, Bert
PY - 2008
Y1 - 2008
N2 - Recently the importance of the third dimension in cell biology has been better understood, resulting in a re-orientation towards three-dimensional (3D) cultivation. Yet adequate tools for their morphological characterization have to be established. Synchrotron radiation-based micro computed tomography (SRμCT) allows visualizing such biological systems with almost isotropic micrometer resolution, non-destructively. We have applied SRμCT for studying the internal morphology of human osteoblast-derived, scaffold-free 3D cultures, termed histoids. Primary human osteoblasts, isolated from femoral neck spongy bone, were grown as 2D culture in non-mineralizing osteogenic medium until a rather thick, multi-cellular membrane was formed. This delicate system was intentionally released to randomly fold itself. The folded cell cultures were grown to histoids of cubic milli- or centimeter size in various combinations of mineralizing and non-mineralizing osteogenic medium for a total period of minimum 56 weeks. The SRμCT-measurements were performed in the absorption contrast mode at the beamlines BW 2 and W 2 (HASYLAB at DESY, Hamburg, Germany), operated by the GKSS-Research Center. To investigate the entire volume of interest several scans were performed under identical conditions and registered to obtain one single dataset of each sample. The histoids grown under different conditions exhibit similar external morphology of globular or ovoid shape. The SRμCT-examination revealed the distinctly different morphological structures inside the histoids. One obtains details of the histoids that permit to identify and select the most promising slices for subsequent histological characterization.
AB - Recently the importance of the third dimension in cell biology has been better understood, resulting in a re-orientation towards three-dimensional (3D) cultivation. Yet adequate tools for their morphological characterization have to be established. Synchrotron radiation-based micro computed tomography (SRμCT) allows visualizing such biological systems with almost isotropic micrometer resolution, non-destructively. We have applied SRμCT for studying the internal morphology of human osteoblast-derived, scaffold-free 3D cultures, termed histoids. Primary human osteoblasts, isolated from femoral neck spongy bone, were grown as 2D culture in non-mineralizing osteogenic medium until a rather thick, multi-cellular membrane was formed. This delicate system was intentionally released to randomly fold itself. The folded cell cultures were grown to histoids of cubic milli- or centimeter size in various combinations of mineralizing and non-mineralizing osteogenic medium for a total period of minimum 56 weeks. The SRμCT-measurements were performed in the absorption contrast mode at the beamlines BW 2 and W 2 (HASYLAB at DESY, Hamburg, Germany), operated by the GKSS-Research Center. To investigate the entire volume of interest several scans were performed under identical conditions and registered to obtain one single dataset of each sample. The histoids grown under different conditions exhibit similar external morphology of globular or ovoid shape. The SRμCT-examination revealed the distinctly different morphological structures inside the histoids. One obtains details of the histoids that permit to identify and select the most promising slices for subsequent histological characterization.
KW - Histoid
KW - Micro computed tomography
KW - Synchrotron radiation
KW - Three-dimensional cell culture
UR - http://www.scopus.com/inward/record.url?scp=56249138264&partnerID=8YFLogxK
U2 - 10.1117/12.795162
DO - 10.1117/12.795162
M3 - Conference contribution
AN - SCOPUS:56249138264
SN - 9780819472984
T3 - Proceedings of SPIE - The International Society for Optical Engineering
BT - Developments in X-Ray Tomography VI
T2 - Developments in X-Ray Tomography VI
Y2 - 12 August 2008 through 14 August 2008
ER -