TY - JOUR
T1 - Intercalation of solvated Na-ions into graphite
AU - Seidl, L.
AU - Bucher, N.
AU - Chu, E.
AU - Hartung, S.
AU - Martens, S.
AU - Schneider, O.
AU - Stimming, U.
N1 - Publisher Copyright:
© The Royal Society of Chemistry 2017.
PY - 2017/7
Y1 - 2017/7
N2 - The reversible intercalation of solvated Na-ions into graphite and the concomitant formation of ternary Na-graphite intercalation compounds (GICs) are studied using several in operando techniques, such as X-ray-diffraction (XRD), electrochemical scanning tunnelling microscopy (EC-STM) and electrochemical quartz crystal microbalance techniques (EQCM). Linear ethylene glycol dimethyl ether homologues ("glymes") Gx with x + 1 O-atoms were used as solvents, where x is 1-4. The intercalation mechanism of Na+(Gx)y-complexes was investigated with a focus on the phase transitions and diffusion rates of the Na+(Gx)y-complexes inside the graphite lattice. For the four shortest glymes (G1 to G4), it is found using XRD that an intermediate stage 2 Na-GIC (NaC48) is formed upon the partial sodiation of the graphite electrode. At full sodiation stage 1 Na-GIC (NaC18, 112 mA h g-1) is obtained for G1, G2 and G4, while the G3 system also forms a stage 1 Na-GIC but with less Na incorporated (NaC30, 70 mA h g-1). The phase transitions of a battery electrode upon ion-intercalation are visualised using STM on the atomic scale for the first time. In addition, the local diffusion rates of the intercalated species inside the electrode were determined, a unique approach for determining kinetic effects in batteries on the atomic scale. The formation of a solid electrolyte interphase (SEI) is observed with STM as well as with an EQCM, while the latter technique is used for novel in situ hydrodynamic spectroscopy, giving further insight into the intercalation mechanism.
AB - The reversible intercalation of solvated Na-ions into graphite and the concomitant formation of ternary Na-graphite intercalation compounds (GICs) are studied using several in operando techniques, such as X-ray-diffraction (XRD), electrochemical scanning tunnelling microscopy (EC-STM) and electrochemical quartz crystal microbalance techniques (EQCM). Linear ethylene glycol dimethyl ether homologues ("glymes") Gx with x + 1 O-atoms were used as solvents, where x is 1-4. The intercalation mechanism of Na+(Gx)y-complexes was investigated with a focus on the phase transitions and diffusion rates of the Na+(Gx)y-complexes inside the graphite lattice. For the four shortest glymes (G1 to G4), it is found using XRD that an intermediate stage 2 Na-GIC (NaC48) is formed upon the partial sodiation of the graphite electrode. At full sodiation stage 1 Na-GIC (NaC18, 112 mA h g-1) is obtained for G1, G2 and G4, while the G3 system also forms a stage 1 Na-GIC but with less Na incorporated (NaC30, 70 mA h g-1). The phase transitions of a battery electrode upon ion-intercalation are visualised using STM on the atomic scale for the first time. In addition, the local diffusion rates of the intercalated species inside the electrode were determined, a unique approach for determining kinetic effects in batteries on the atomic scale. The formation of a solid electrolyte interphase (SEI) is observed with STM as well as with an EQCM, while the latter technique is used for novel in situ hydrodynamic spectroscopy, giving further insight into the intercalation mechanism.
UR - http://www.scopus.com/inward/record.url?scp=85024829772&partnerID=8YFLogxK
U2 - 10.1039/c7ee00546f
DO - 10.1039/c7ee00546f
M3 - Article
AN - SCOPUS:85024829772
SN - 1754-5692
VL - 10
SP - 1631
EP - 1642
JO - Energy and Environmental Science
JF - Energy and Environmental Science
IS - 7
ER -