Interactive scene prediction for automotive applications

Andreas Lawitzky, Daniel Althoff, Christoph F. Passenberg, Georg Tanzmeister, Dirk Wollherr, Martin Buss

Publikation: Beitrag in Buch/Bericht/KonferenzbandKonferenzbeitragBegutachtung

76 Zitate (Scopus)

Abstract

In this work, a framework for motion prediction of vehicles and safety assessment of traffic scenes is presented. The developed framework can be used for driver assistant systems as well as for autonomous driving applications. In order to assess the safety of the future trajectories of the vehicle, these systems require a prediction of the future motion of all traffic participants. As the traffic participants have a mutual influence on each other, the interaction of them is explicitly considered in this framework, which is inspired by an optimization problem. Taking the mutual influence of traffic participants into account, this framework differs from the existing approaches which consider the interaction only insufficiently, suffering reliability in real traffic scenes. For motion prediction, the collision probability of a vehicle performing a certain maneuver, is computed. Based on the safety evaluation and the assumption that drivers avoid collisions, the prediction is realized. Simulation scenarios and real-world results show the functionality.

OriginalspracheEnglisch
Titel2013 IEEE Intelligent Vehicles Symposium, IEEE IV 2013
Seiten1028-1033
Seitenumfang6
DOIs
PublikationsstatusVeröffentlicht - 2013
Extern publiziertJa
Veranstaltung2013 IEEE Intelligent Vehicles Symposium, IEEE IV 2013 - Gold Coast, QLD, Australien
Dauer: 23 Juni 201326 Juni 2013

Publikationsreihe

NameIEEE Intelligent Vehicles Symposium, Proceedings

Konferenz

Konferenz2013 IEEE Intelligent Vehicles Symposium, IEEE IV 2013
Land/GebietAustralien
OrtGold Coast, QLD
Zeitraum23/06/1326/06/13

Fingerprint

Untersuchen Sie die Forschungsthemen von „Interactive scene prediction for automotive applications“. Zusammen bilden sie einen einzigartigen Fingerprint.

Dieses zitieren