Inter-Cell Slicing Resource Partitioning via Coordinated Multi-Agent Deep Reinforcement Learning

Tianlun Hu, Qi Liao, Qiang Liu, Dan Wellington, Georg Carle

Publikation: Beitrag in Buch/Bericht/KonferenzbandKonferenzbeitragBegutachtung

7 Zitate (Scopus)

Abstract

Network slicing enables the operator to configure virtual network instances for diverse services with specific requirements. To achieve the slice-aware radio resource scheduling, dynamic slicing resource partitioning is needed to orchestrate multi-cell slice resources and mitigate inter-cell interference. It is, however, challenging to derive the analytical solutions due to the complex inter-cell interdependencies, inter-slice resource constraints, and service-specific requirements. In this paper, we propose a multi-agent deep reinforcement learning (DRL) approach that improves the max-min slice performance while maintaining the constraints of resource capacity. We design two coordination schemes to allow distributed agents to coordinate and mitigate inter-cell interference. The proposed approach is extensively evaluated in a system-level simulator. The numerical results show that the proposed approach with inter-agent coordination outperforms the centralized approach in terms of delay and convergence. The proposed approach improves more than two-fold increase in resource efficiency as compared to the baseline approach.

OriginalspracheEnglisch
TitelICC 2022 - IEEE International Conference on Communications
Herausgeber (Verlag)Institute of Electrical and Electronics Engineers Inc.
Seiten3202-3207
Seitenumfang6
ISBN (elektronisch)9781538683477
DOIs
PublikationsstatusVeröffentlicht - 2022
Veranstaltung2022 IEEE International Conference on Communications, ICC 2022 - Seoul, Südkorea
Dauer: 16 Mai 202220 Mai 2022

Publikationsreihe

NameIEEE International Conference on Communications
Band2022-May
ISSN (Print)1550-3607

Konferenz

Konferenz2022 IEEE International Conference on Communications, ICC 2022
Land/GebietSüdkorea
OrtSeoul
Zeitraum16/05/2220/05/22

Fingerprint

Untersuchen Sie die Forschungsthemen von „Inter-Cell Slicing Resource Partitioning via Coordinated Multi-Agent Deep Reinforcement Learning“. Zusammen bilden sie einen einzigartigen Fingerprint.

Dieses zitieren