Integer programs with nearly totally unimodular matrices: the cographic case*

Manuel Aprile, Samuel Fiorini, Gwenaël Joret, Stefan Kober, Michal T. Seweryn, Stefan Weltge, Yelena Yuditsky

Publikation: Beitrag in Buch/Bericht/KonferenzbandKonferenzbeitragBegutachtung

Abstract

It is a notorious open question whether integer programs (IPs) with an integer coe cient matrix M whose subdeterminants are all bounded by a constant ∆ in absolute value can be solved in polynomial time. We answer this question in the a rmative if we further require that, by removing a constant number of rows and columns from M, one obtains a submatrix A that is the transpose of a network matrix. Our approach focuses on the case where A arises from M after removing k rows only, where k is a constant. We achieve our result in two main steps, the rst related to the theory of IPs and the second related to graph minor theory. First, we derive a strong proximity result for the case where A is a general totally unimodular matrix: Given an optimal solution of the linear programming relaxation, an optimal solution to the IP can be obtained by nding a constant number of augmentations by circuits of [A I]. Second, for the case where A is transpose of a network matrix, we reformulate the problem as a maximum constrained integer potential problem on a graph G. We observe that if G is 2-connected, then it has no rooted K2,t-minor for t = Ω(k∆). We leverage this to obtain a tree-decomposition of G into highly structured graphs for which we can solve the problem locally. This allows us to solve the global problem via dynamic programming.

OriginalspracheEnglisch
TitelAnnual ACM-SIAM Symposium on Discrete Algorithms, SODA 2025
Herausgeber (Verlag)Association for Computing Machinery
Seiten2301-2312
Seitenumfang12
ISBN (elektronisch)9798331312008
PublikationsstatusVeröffentlicht - 2025
Veranstaltung36th Annual ACM-SIAM Symposium on Discrete Algorithms, SODA 2025 - New Orleans, USA/Vereinigte Staaten
Dauer: 12 Jan. 202515 Jan. 2025

Publikationsreihe

NameProceedings of the Annual ACM-SIAM Symposium on Discrete Algorithms
Band4
ISSN (Print)1071-9040
ISSN (elektronisch)1557-9468

Konferenz

Konferenz36th Annual ACM-SIAM Symposium on Discrete Algorithms, SODA 2025
Land/GebietUSA/Vereinigte Staaten
OrtNew Orleans
Zeitraum12/01/2515/01/25

Fingerprint

Untersuchen Sie die Forschungsthemen von „Integer programs with nearly totally unimodular matrices: the cographic case*“. Zusammen bilden sie einen einzigartigen Fingerprint.

Dieses zitieren