Integer programs with bounded subdeterminants and two nonzeros per row

Samuel Fiorini, Gwenael Joret, Stefan Weltge, Yelena Yuditsky

Publikation: Beitrag in Buch/Bericht/KonferenzbandKonferenzbeitragBegutachtung

16 Zitate (Scopus)

Abstract

We give a strongly polynomial-time algorithm for integer linear programs defined by integer coefficient matrices whose subdeterminants are bounded by a constant and that contain at most two nonzero entries in each row. The core of our approach is the first polynomial-time algorithm for the weighted stable set problem on graphs that do not contain more than k vertex-disjoint odd cycles, where k is any constant. Previously, polynomial-time algorithms were only known for k=0 (bipartite graphs) and for k=1. We observe that integer linear programs defined by coefficient matrices with bounded subdeterminants and two nonzeros per column can be also solved in strongly polynomial-time, using a reduction to b-matching.

OriginalspracheEnglisch
TitelProceedings - 2021 IEEE 62nd Annual Symposium on Foundations of Computer Science, FOCS 2021
Herausgeber (Verlag)IEEE Computer Society
Seiten13-24
Seitenumfang12
ISBN (elektronisch)9781665420556
DOIs
PublikationsstatusVeröffentlicht - 2022
Veranstaltung62nd IEEE Annual Symposium on Foundations of Computer Science, FOCS 2021 - Virtual, Online, USA/Vereinigte Staaten
Dauer: 7 Feb. 202210 Feb. 2022

Publikationsreihe

NameProceedings - Annual IEEE Symposium on Foundations of Computer Science, FOCS
Band2022-February
ISSN (Print)0272-5428

Konferenz

Konferenz62nd IEEE Annual Symposium on Foundations of Computer Science, FOCS 2021
Land/GebietUSA/Vereinigte Staaten
OrtVirtual, Online
Zeitraum7/02/2210/02/22

Fingerprint

Untersuchen Sie die Forschungsthemen von „Integer programs with bounded subdeterminants and two nonzeros per row“. Zusammen bilden sie einen einzigartigen Fingerprint.

Dieses zitieren