Instance Segmentation of Buildings Using Keypoints

Qingyu Li, Lichao Mou, Yuansheng Hua, Yao Sun, Pu Jin, Yilei Shi, Xiao Xiang Zhu

Publikation: Beitrag in Buch/Bericht/KonferenzbandKonferenzbeitragBegutachtung

18 Zitate (Scopus)

Abstract

Building segmentation is of great importance in the task of remote sensing imagery interpretation. However, the existing semantic segmentation and instance segmentation methods often lead to segmentation masks with blurred boundaries. In this paper, we propose a novel instance segmentation network for building segmentation in high-resolution remote sensing images. More specifically, we consider segmenting an individual building as detecting several keypoints. The detected keypoints are subsequently reformulated as a closed polygon, which is the semantic boundary of the building. By doing so, the sharp boundary of the building could be preserved. Experiments are conducted on selected Aerial Imagery for Roof Segmentation (AIRS) dataset, and our method achieves better performance in both quantitative and qualitative results with comparison to the state-of-the-art methods. Our network is a bottom-up instance segmentation method that could well preserve geometric details.

OriginalspracheEnglisch
Titel2020 IEEE International Geoscience and Remote Sensing Symposium, IGARSS 2020 - Proceedings
Herausgeber (Verlag)Institute of Electrical and Electronics Engineers Inc.
Seiten1452-1455
Seitenumfang4
ISBN (elektronisch)9781728163741
DOIs
PublikationsstatusVeröffentlicht - 26 Sept. 2020
Extern publiziertJa
Veranstaltung2020 IEEE International Geoscience and Remote Sensing Symposium, IGARSS 2020 - Virtual, Waikoloa, USA/Vereinigte Staaten
Dauer: 26 Sept. 20202 Okt. 2020

Publikationsreihe

NameInternational Geoscience and Remote Sensing Symposium (IGARSS)

Konferenz

Konferenz2020 IEEE International Geoscience and Remote Sensing Symposium, IGARSS 2020
Land/GebietUSA/Vereinigte Staaten
OrtVirtual, Waikoloa
Zeitraum26/09/202/10/20

Fingerprint

Untersuchen Sie die Forschungsthemen von „Instance Segmentation of Buildings Using Keypoints“. Zusammen bilden sie einen einzigartigen Fingerprint.

Dieses zitieren