Instance Segmentation in CARLA: Methodology and Analysis for Pedestrian-oriented Synthetic Data Generation in Crowded Scenes

Maria Lyssenko, Christoph Gladisch, Christian Heinzemann, Matthias Woehrle, Rudolph Triebel

Publikation: Beitrag in Buch/Bericht/KonferenzbandKonferenzbeitragBegutachtung

6 Zitate (Scopus)

Abstract

The evaluation of camera-based perception functions in automated driving (AD) is a significant challenge and requires large-scale high-quality datasets. Recently proposed metrics for safety evaluation additionally require detailed per-instance annotations of dynamic properties such as distance and velocities that may not be available in openly accessible AD datasets. Synthetic data from 3D simulators like CARLA may provide a solution to this problem as labeled data can be produced in a structured manner. However, CARLA currently lacks instance segmentation ground truth. In this paper, we present a back projection pipeline that allows us to obtain accurate instance segmentation maps for CARLA, which is necessary for precise per-instance ground truth information. Our evaluation results show that per-pedestrian depth aggregation obtained from our instance segmentation is more precise than previously available approximations based on bounding boxes especially in the context of crowded scenes in urban automated driving.

OriginalspracheEnglisch
TitelProceedings - 2021 IEEE/CVF International Conference on Computer Vision Workshops, ICCVW 2021
Herausgeber (Verlag)Institute of Electrical and Electronics Engineers Inc.
Seiten988-996
Seitenumfang9
ISBN (elektronisch)9781665401913
DOIs
PublikationsstatusVeröffentlicht - 2021
Veranstaltung18th IEEE/CVF International Conference on Computer Vision Workshops, ICCVW 2021 - Virtual, Online, Kanada
Dauer: 11 Okt. 202117 Okt. 2021

Publikationsreihe

NameProceedings of the IEEE International Conference on Computer Vision
Band2021-October
ISSN (Print)1550-5499

Konferenz

Konferenz18th IEEE/CVF International Conference on Computer Vision Workshops, ICCVW 2021
Land/GebietKanada
OrtVirtual, Online
Zeitraum11/10/2117/10/21

Fingerprint

Untersuchen Sie die Forschungsthemen von „Instance Segmentation in CARLA: Methodology and Analysis for Pedestrian-oriented Synthetic Data Generation in Crowded Scenes“. Zusammen bilden sie einen einzigartigen Fingerprint.

Dieses zitieren