Infrastructure-based vehicle maneuver estimation at urban intersections

T. Schendzielorz, P. Mathias, F. Busch

Publikation: Beitrag in Buch/Bericht/KonferenzbandKonferenzbeitragBegutachtung

10 Zitate (Scopus)

Abstract

Accident-prone spots in urban areas are mainly located at signalized intersections, where road users are often confronted with complex situations that are sometimes hard to interpret and deal with properly. The objective of this paper is to present a model for estimating the maneuvers of the vehicles approaching an urban intersection. This estimation is part of the Intelligent Cooperative Intersection Safety system (IRIS), which assists the road users at urban intersections. The system uses vehicle-to-infrastructure communication and extended road side sensing to track and predict the movements of individual road users. The estimation of the future situation at the intersection is an input for the identification of safety-critical situations. Once the system detects a critical situation, it sends a warning message to the road users via short-range communication. The system was successfully tested at a real intersection in the city of Dortmund, Germany.

OriginalspracheEnglisch
Titel2013 16th International IEEE Conference on Intelligent Transportation Systems
UntertitelIntelligent Transportation Systems for All Modes, ITSC 2013
Seiten1442-1447
Seitenumfang6
DOIs
PublikationsstatusVeröffentlicht - 2013
Veranstaltung2013 16th International IEEE Conference on Intelligent Transportation Systems: Intelligent Transportation Systems for All Modes, ITSC 2013 - The Hague, Niederlande
Dauer: 6 Okt. 20139 Okt. 2013

Publikationsreihe

NameIEEE Conference on Intelligent Transportation Systems, Proceedings, ITSC

Konferenz

Konferenz2013 16th International IEEE Conference on Intelligent Transportation Systems: Intelligent Transportation Systems for All Modes, ITSC 2013
Land/GebietNiederlande
OrtThe Hague
Zeitraum6/10/139/10/13

Fingerprint

Untersuchen Sie die Forschungsthemen von „Infrastructure-based vehicle maneuver estimation at urban intersections“. Zusammen bilden sie einen einzigartigen Fingerprint.

Dieses zitieren