TY - JOUR
T1 - Inference of differential gene regulatory networks using boosted differential trees
AU - Galindez, Gihanna
AU - List, Markus
AU - Baumbach, Jan
AU - Völker, Uwe
AU - Mäder, Ulrike
AU - Blumenthal, David B.
AU - Kacprowski, Tim
N1 - Publisher Copyright:
© 2024 The Author(s). Published by Oxford University Press.
PY - 2024
Y1 - 2024
N2 - Diseases can be caused by molecular perturbations that induce specific changes in regulatory interactions and their coordinated expression, also referred to as network rewiring. However, the detection of complex changes in regulatory connections remains a challenging task and would benefit from the development of novel nonparametric approaches. We develop a new ensemble method called BoostDiff (boosted differential regression trees) to infer a differential network discriminating between two conditions. BoostDiff builds an adaptively boosted (AdaBoost) ensemble of differential trees with respect to a target condition. To build the differential trees, we propose differential variance improvement as a novel splitting criterion. Variable importance measures derived from the resulting models are used to reflect changes in gene expression predictability and to build the output differential networks. BoostDiff outperforms existing differential network methods on simulated data evaluated in four different complexity settings. We then demonstrate the power of our approach when applied to real transcriptomics data in COVID-19, Crohn's disease, breast cancer, prostate adenocarcinoma, and stress response in Bacillus subtilis. BoostDiff identifies context-specific networks that are enriched with genes of known disease-relevant pathways and complements standard differential expression analyses.
AB - Diseases can be caused by molecular perturbations that induce specific changes in regulatory interactions and their coordinated expression, also referred to as network rewiring. However, the detection of complex changes in regulatory connections remains a challenging task and would benefit from the development of novel nonparametric approaches. We develop a new ensemble method called BoostDiff (boosted differential regression trees) to infer a differential network discriminating between two conditions. BoostDiff builds an adaptively boosted (AdaBoost) ensemble of differential trees with respect to a target condition. To build the differential trees, we propose differential variance improvement as a novel splitting criterion. Variable importance measures derived from the resulting models are used to reflect changes in gene expression predictability and to build the output differential networks. BoostDiff outperforms existing differential network methods on simulated data evaluated in four different complexity settings. We then demonstrate the power of our approach when applied to real transcriptomics data in COVID-19, Crohn's disease, breast cancer, prostate adenocarcinoma, and stress response in Bacillus subtilis. BoostDiff identifies context-specific networks that are enriched with genes of known disease-relevant pathways and complements standard differential expression analyses.
UR - http://www.scopus.com/inward/record.url?scp=85188160029&partnerID=8YFLogxK
U2 - 10.1093/bioadv/vbae034
DO - 10.1093/bioadv/vbae034
M3 - Article
AN - SCOPUS:85188160029
SN - 2635-0041
VL - 4
JO - Bioinformatics Advances
JF - Bioinformatics Advances
IS - 1
M1 - vbae034
ER -