Inference and mixture modeling with the Elliptical Gamma Distribution

Reshad Hosseini, Suvrit Sra, Lucas Theis, Matthias Bethge

Publikation: Beitrag in FachzeitschriftArtikelBegutachtung

3 Zitate (Scopus)

Abstract

The authors study modeling and inference with the Elliptical Gamma Distribution (EGD). In particular, Maximum likelihood (ML) estimation for EGD scatter matrices is considered, a task for which the authors present new fixed-point algorithms. The algorithms are shown to be efficient and convergent to global optima despite non-convexity. Moreover, they turn out to be much faster than both a well-known iterative algorithm of Kent & Tyler and sophisticated manifold optimization algorithms. Subsequently, the ML algorithms are invoked as subroutines for estimating parameters of a mixture of EGDs. The performance of the methods is illustrated on the task of modeling natural image statistics - the proposed EGD mixture model yields the most parsimonious model among several competing approaches.

OriginalspracheEnglisch
Seiten (von - bis)29-43
Seitenumfang15
FachzeitschriftComputational Statistics and Data Analysis
Jahrgang101
DOIs
PublikationsstatusVeröffentlicht - Sept. 2016
Extern publiziertJa

Fingerprint

Untersuchen Sie die Forschungsthemen von „Inference and mixture modeling with the Elliptical Gamma Distribution“. Zusammen bilden sie einen einzigartigen Fingerprint.

Dieses zitieren