Industrial load management using multi-agent reinforcement learning for rescheduling

Martin Roesch, Christian Linder, Christian Bruckdorfer, Andrea Hohmann, Gunther Reinhart

Publikation: Beitrag in Buch/Bericht/KonferenzbandKonferenzbeitragBegutachtung

7 Zitate (Scopus)

Abstract

Industrial load management plays an important role in the balance of energy consumption and electricity generation, which is increasingly fluctuating due to the growing share of renewable energies. Manufacturing companies are able to adapt their energy consumption by considering energy aspects in their production schedule. It may even be beneficial to temporarily force production resources into idle states and to thus reduce energy demand for a limited period. However, the resulting scheduling problem is very complex and at the same time should be executed in real-time. This paper presents an approach for industrial load management using multi-agent reinforcement learning for energy-oriented rescheduling. A simulation study serves to validate the approach. The results show good solutions and at the same time low computational expense compared to a metaheuristic approach using simulated annealing.

OriginalspracheEnglisch
TitelProceedings - 2019 2nd International Conference on Artificial Intelligence for Industries, AI4I 2019
Herausgeber (Verlag)Institute of Electrical and Electronics Engineers Inc.
Seiten99-102
Seitenumfang4
ISBN (elektronisch)9781728140872
DOIs
PublikationsstatusVeröffentlicht - Sept. 2019
Extern publiziertJa
Veranstaltung2nd International Conference on Artificial Intelligence for Industries, AI4I 2019 - Laguna Hills, USA/Vereinigte Staaten
Dauer: 25 Sept. 201927 Sept. 2019

Publikationsreihe

NameProceedings - 2019 2nd International Conference on Artificial Intelligence for Industries, AI4I 2019

Konferenz

Konferenz2nd International Conference on Artificial Intelligence for Industries, AI4I 2019
Land/GebietUSA/Vereinigte Staaten
OrtLaguna Hills
Zeitraum25/09/1927/09/19

Fingerprint

Untersuchen Sie die Forschungsthemen von „Industrial load management using multi-agent reinforcement learning for rescheduling“. Zusammen bilden sie einen einzigartigen Fingerprint.

Dieses zitieren