TY - JOUR
T1 - Indoor Pollen Concentrations of Mountain Cedar (Juniperus ashei) during Rainy Episodes in Austin, Texas
AU - Jochner-Oette, Susanne
AU - Jetschni, Johanna
AU - Liedl, Petra
AU - Menzel, Annette
N1 - Publisher Copyright:
© 2022 by the authors. Licensee MDPI, Basel, Switzerland.
PY - 2022/2/1
Y1 - 2022/2/1
N2 - Standard pollen monitoring programs evaluate outdoor pollen concentrations; however, information on indoor pollen is crucial for human wellbeing as people spend most of the day in indoor environments. In this study, we investigated the differences in indoor mountain cedar pollen loads between rooms of different uses and with different ventilation at The University of Texas in Austin and focused on the effect of rainy episodes on indoor/outdoor ratios of pollen concentrations. Pollen were sampled outdoors and indoors, specifically in seven rooms and in two thermal labs with controlled ventilation, during the daytime on 6 days in 2015. We calculated daily pollen concentrations, campaign pollen integrals (CPIn, the sum of all daily pollen concentrations) and ratios between indoor and outdoor concentrations (I/O ratio). Pollen concentrations differed substantially based on features related to room use and ventilation: Whereas the highest CPIn was observed in a room characterized by a frequently opened window and door, the smallest CPIn was related to a storeroom without any windows and no forced ventilation. Our results showed that rainy episodes were linked to a higher mean I/O ratio (0.98; non-rainy episodes: 0.05). This suggests that pollen accumulated indoors and reached higher levels than outdoors. Low ratios seem to signal a low level of risk for allergic people when staying inside. However, under very high outdoor pollen concentrations, small ratios can still be associated with high indoor pollen levels. In turn, high I/O ratios are not necessarily related to a (very) high indoor exposure. Therefore, I/O ratios should be considered along with pollen concentration values for a proper risk assessment. Exposure may be higher in indoor environments during prevailing precipitation events and at the end of the pollen season of a specific species. Standardized indoor environments (e.g., thermal labs) should be included in pollen monitoring programs.
AB - Standard pollen monitoring programs evaluate outdoor pollen concentrations; however, information on indoor pollen is crucial for human wellbeing as people spend most of the day in indoor environments. In this study, we investigated the differences in indoor mountain cedar pollen loads between rooms of different uses and with different ventilation at The University of Texas in Austin and focused on the effect of rainy episodes on indoor/outdoor ratios of pollen concentrations. Pollen were sampled outdoors and indoors, specifically in seven rooms and in two thermal labs with controlled ventilation, during the daytime on 6 days in 2015. We calculated daily pollen concentrations, campaign pollen integrals (CPIn, the sum of all daily pollen concentrations) and ratios between indoor and outdoor concentrations (I/O ratio). Pollen concentrations differed substantially based on features related to room use and ventilation: Whereas the highest CPIn was observed in a room characterized by a frequently opened window and door, the smallest CPIn was related to a storeroom without any windows and no forced ventilation. Our results showed that rainy episodes were linked to a higher mean I/O ratio (0.98; non-rainy episodes: 0.05). This suggests that pollen accumulated indoors and reached higher levels than outdoors. Low ratios seem to signal a low level of risk for allergic people when staying inside. However, under very high outdoor pollen concentrations, small ratios can still be associated with high indoor pollen levels. In turn, high I/O ratios are not necessarily related to a (very) high indoor exposure. Therefore, I/O ratios should be considered along with pollen concentration values for a proper risk assessment. Exposure may be higher in indoor environments during prevailing precipitation events and at the end of the pollen season of a specific species. Standardized indoor environments (e.g., thermal labs) should be included in pollen monitoring programs.
KW - Indoor pollen
KW - Mountain cedar
KW - Personal volumetric air samplers
KW - Thermal labs
KW - Ventilation
UR - http://www.scopus.com/inward/record.url?scp=85123539958&partnerID=8YFLogxK
U2 - 10.3390/ijerph19031541
DO - 10.3390/ijerph19031541
M3 - Article
C2 - 35162567
AN - SCOPUS:85123539958
SN - 1661-7827
VL - 19
JO - International Journal of Environmental Research and Public Health
JF - International Journal of Environmental Research and Public Health
IS - 3
M1 - 1541
ER -