Indicative support vector clustering with its application on anomaly detection

Huang Xiao, Claudia Eckert

Publikation: KonferenzbeitragPapierBegutachtung

2 Zitate (Scopus)

Abstract

In many learning scenarios, supervised learning is hardly applicable due to the unavailability of a complete set of data labels, while unsupervised model overlooks valuable user feedback in an interactive system setting. In this paper, a novel semi-supervised support vector clustering algorithm is presented, where a small number of user indicated labels are available as supervised information. We apply the clustering algorithm in the anomaly detection area, and show that the given labels significantly improve the recognition of anomalies. Moreover, the partially labeled data proliferates the information without extra computation but strengthening the robustness to anomalies.

OriginalspracheEnglisch
Seiten273-276
Seitenumfang4
DOIs
PublikationsstatusVeröffentlicht - 2013
Veranstaltung2013 12th International Conference on Machine Learning and Applications, ICMLA 2013 - Miami, FL, USA/Vereinigte Staaten
Dauer: 4 Dez. 20137 Dez. 2013

Konferenz

Konferenz2013 12th International Conference on Machine Learning and Applications, ICMLA 2013
Land/GebietUSA/Vereinigte Staaten
OrtMiami, FL
Zeitraum4/12/137/12/13

Fingerprint

Untersuchen Sie die Forschungsthemen von „Indicative support vector clustering with its application on anomaly detection“. Zusammen bilden sie einen einzigartigen Fingerprint.

Dieses zitieren