In-Database Machine Learning with SQL on GPUs

Maximilian Schule, Harald Lang, Maximilian Springer, Alfons Kemper, Thomas Neumann, Stephan Gunnemann

Publikation: Beitrag in Buch/Bericht/KonferenzbandKonferenzbeitragBegutachtung

18 Zitate (Scopus)

Abstract

In machine learning, continuously retraining a model guarantees accurate predictions based on the latest data as training input. But to retrieve the latest data from a database, time-consuming extraction is necessary as database systems have rarely been used for operations such as matrix algebra and gradient descent. In this work, we demonstrate that SQL with recursive tables makes it possible to express a complete machine learning pipeline out of data preprocessing, model training and its validation. To facilitate the specification of loss functions, we extend the code-generating database system Umbra by an operator for automatic differentiation for use within recursive tables: With the loss function expressed in SQL as a lambda function, Umbra generates machine code for each partial derivative. We further use automatic differentiation for a dedicated gradient descent operator, which generates LLVM code to train a user-specified model on GPUs. We fine-Tune GPU kernels at hardware level to allow a higher throughput and propose non-blocking synchronisation of multiple units. In our evaluation, automatic differentiation accelerated the runtime by the number of cached subexpressions compared to compiling each derivative separately. Our GPU kernels with independent models allowed maximal throughput even for small batch sizes, making machine learning pipelines within SQL more competitive.

OriginalspracheEnglisch
Titel33rd International Conference on Scientific and Statistical Database Management, SSDBM 2021, Proceedings
Redakteure/-innenQiang Zhu, Xingquan Zhu, Yicheng Tu, Zichen Xu, Anand Kumar
Herausgeber (Verlag)Association for Computing Machinery
Seiten25-36
Seitenumfang12
ISBN (elektronisch)9781450384131
DOIs
PublikationsstatusVeröffentlicht - 6 Juli 2021
Veranstaltung33rd International Conference on Scientific and Statistical Database Management, SSDBM 2021 - Virtual, Online, USA/Vereinigte Staaten
Dauer: 6 Juli 2021 → …

Publikationsreihe

NameACM International Conference Proceeding Series

Konferenz

Konferenz33rd International Conference on Scientific and Statistical Database Management, SSDBM 2021
Land/GebietUSA/Vereinigte Staaten
OrtVirtual, Online
Zeitraum6/07/21 → …

Fingerprint

Untersuchen Sie die Forschungsthemen von „In-Database Machine Learning with SQL on GPUs“. Zusammen bilden sie einen einzigartigen Fingerprint.

Dieses zitieren