TY - GEN
T1 - Improving Health Question Answering with Reliable and Time-Aware Evidence Retrieval
AU - Vladika, Juraj
AU - Matthes, Florian
N1 - Publisher Copyright:
© 2024 Association for Computational Linguistics.
PY - 2024
Y1 - 2024
N2 - In today's digital world, seeking answers to health questions on the Internet is a common practice. However, existing question answering (QA) systems often rely on using pre-selected and annotated evidence documents, thus making them inadequate for addressing novel questions. Our study focuses on the open-domain QA setting, where the key challenge is to first uncover relevant evidence in large knowledge bases. By utilizing the common retrieve-then-read QA pipeline and PubMed as a trustworthy collection of medical research documents, we answer health questions from three diverse datasets. We modify different retrieval settings to observe their influence on the QA pipeline's performance, including the number of retrieved documents, sentence selection process, the publication year of articles, and their number of citations. Our results reveal that cutting down on the amount of retrieved documents and favoring more recent and highly cited documents can improve the final macro F1 score up to 10%. We discuss the results, highlight interesting examples, and outline challenges for future research, like managing evidence disagreement and crafting user-friendly explanations.
AB - In today's digital world, seeking answers to health questions on the Internet is a common practice. However, existing question answering (QA) systems often rely on using pre-selected and annotated evidence documents, thus making them inadequate for addressing novel questions. Our study focuses on the open-domain QA setting, where the key challenge is to first uncover relevant evidence in large knowledge bases. By utilizing the common retrieve-then-read QA pipeline and PubMed as a trustworthy collection of medical research documents, we answer health questions from three diverse datasets. We modify different retrieval settings to observe their influence on the QA pipeline's performance, including the number of retrieved documents, sentence selection process, the publication year of articles, and their number of citations. Our results reveal that cutting down on the amount of retrieved documents and favoring more recent and highly cited documents can improve the final macro F1 score up to 10%. We discuss the results, highlight interesting examples, and outline challenges for future research, like managing evidence disagreement and crafting user-friendly explanations.
UR - http://www.scopus.com/inward/record.url?scp=85197859505&partnerID=8YFLogxK
U2 - 10.18653/v1/2024.findings-naacl.295
DO - 10.18653/v1/2024.findings-naacl.295
M3 - Conference contribution
AN - SCOPUS:85197859505
T3 - Findings of the Association for Computational Linguistics: NAACL 2024 - Findings
SP - 4752
EP - 4763
BT - Findings of the Association for Computational Linguistics
A2 - Duh, Kevin
A2 - Gomez, Helena
A2 - Bethard, Steven
PB - Association for Computational Linguistics (ACL)
T2 - 2024 Findings of the Association for Computational Linguistics: NAACL 2024
Y2 - 16 June 2024 through 21 June 2024
ER -