Impedance-based Gaussian Processes for predicting human behavior during physical interaction

Jose Ramon Medina, Satoshi Endo, Sandra Hirche

Publikation: Beitrag in Buch/Bericht/KonferenzbandKonferenzbeitragBegutachtung

12 Zitate (Scopus)

Abstract

For seamless physical human-robot interaction (pHRI), estimating human intention is essential. Most system identification approaches to pHRI model the human as a black box without prior assumptions about the underlying behavioral structure. However, integrating a priori knowledge about behavioral characteristics of the human provides superior prediction performance. In this work we present a novel method for human behavior prediction during physical interaction that incorporates an empirically supported human motor control model. The arm dynamics of the human are modeled as a mechanical impedance that follows a latent desired trajectory. We adopt a Bayesian perspective setting Gaussian Process (GP) priors on impedance parameters and the desired trajectory, which allows regression about human behavior from observed trajectories and interaction forces. The proposed impedance-based GP model is validated in simulation and in an experiment with human participants to demonstrate its prediction performance and generalization capability.

OriginalspracheEnglisch
Titel2016 IEEE International Conference on Robotics and Automation, ICRA 2016
Herausgeber (Verlag)Institute of Electrical and Electronics Engineers Inc.
Seiten3055-3061
Seitenumfang7
ISBN (elektronisch)9781467380263
DOIs
PublikationsstatusVeröffentlicht - 8 Juni 2016
Veranstaltung2016 IEEE International Conference on Robotics and Automation, ICRA 2016 - Stockholm, Schweden
Dauer: 16 Mai 201621 Mai 2016

Publikationsreihe

NameProceedings - IEEE International Conference on Robotics and Automation
Band2016-June
ISSN (Print)1050-4729

Konferenz

Konferenz2016 IEEE International Conference on Robotics and Automation, ICRA 2016
Land/GebietSchweden
OrtStockholm
Zeitraum16/05/1621/05/16

Fingerprint

Untersuchen Sie die Forschungsthemen von „Impedance-based Gaussian Processes for predicting human behavior during physical interaction“. Zusammen bilden sie einen einzigartigen Fingerprint.

Dieses zitieren