TY - JOUR
T1 - Impaired and preserved aspects of independent finger control in patients with cerebellar damage
AU - Brandauer, B.
AU - Hermsdörfer, J.
AU - Geißendörfer, T.
AU - Schoch, B.
AU - Gizewski, E. R.
AU - Timmann, D.
PY - 2012/2
Y1 - 2012/2
N2 - The influence of the cerebellum on independent finger control has rarely been investigated. We examined multidigit control in 22 patients with cerebellar degeneration, 20 patients with cerebellar stroke, and 21 patients with surgical lesions after cerebellar tumor removal. In the first task, either the index finger or the middle finger was actively lifted from an object during static holding. Both controls and cerebellar patients increased the forces of the nearby digits in synchrony with lift-off to maintain the total finger force. Patients used increased finger forces but showed no significant deficits in the pattern and timing of rearrangement of finger forces. In the second task, subjects had to press and release one finger against a force-sensitive keypad with the other fingers being inactive. All patient groups showed increased force production of the noninstructed (enslaved) fingers compared with controls. Lesion-symptom mapping in the focal patients revealed that lesions of the superior hand area were related to abnormal levels of enslaving. Increased finger forces in the finger-lifting task likely reflect an unspecific safety strategy. Increased effects of enslaving in the individuated key-press task, however, may be explained by a deterioration of cerebellar contribution to feedforward commands necessary to suppress activity in noninstructed fingers or by increased spread of the motor command intended for the instructed finger. Despite the large and diverse patient sample, surprisingly few abnormalities were observed. Both holding an object and finger typing are overlearned, automatized motor tasks, which may not or little depend on the integrity of the cerebellum.
AB - The influence of the cerebellum on independent finger control has rarely been investigated. We examined multidigit control in 22 patients with cerebellar degeneration, 20 patients with cerebellar stroke, and 21 patients with surgical lesions after cerebellar tumor removal. In the first task, either the index finger or the middle finger was actively lifted from an object during static holding. Both controls and cerebellar patients increased the forces of the nearby digits in synchrony with lift-off to maintain the total finger force. Patients used increased finger forces but showed no significant deficits in the pattern and timing of rearrangement of finger forces. In the second task, subjects had to press and release one finger against a force-sensitive keypad with the other fingers being inactive. All patient groups showed increased force production of the noninstructed (enslaved) fingers compared with controls. Lesion-symptom mapping in the focal patients revealed that lesions of the superior hand area were related to abnormal levels of enslaving. Increased finger forces in the finger-lifting task likely reflect an unspecific safety strategy. Increased effects of enslaving in the individuated key-press task, however, may be explained by a deterioration of cerebellar contribution to feedforward commands necessary to suppress activity in noninstructed fingers or by increased spread of the motor command intended for the instructed finger. Despite the large and diverse patient sample, surprisingly few abnormalities were observed. Both holding an object and finger typing are overlearned, automatized motor tasks, which may not or little depend on the integrity of the cerebellum.
UR - http://www.scopus.com/inward/record.url?scp=84856805367&partnerID=8YFLogxK
U2 - 10.1152/jn.00142.2011
DO - 10.1152/jn.00142.2011
M3 - Article
C2 - 22114161
AN - SCOPUS:84856805367
SN - 0022-3077
VL - 107
SP - 1080
EP - 1093
JO - Journal of Neurophysiology
JF - Journal of Neurophysiology
IS - 4
ER -