TY - GEN
T1 - Impact of the stabilized finite element method on acoustic and vortical perturbations in thermoacoustic systems
AU - Hofmeister, Thomas
AU - Hummel, Tobias
AU - Sattelmayer, Thomas
N1 - Publisher Copyright:
Copyright © 2020 ASME
PY - 2020
Y1 - 2020
N2 - This paper seeks to advance linear stability analyses of thermoacoustic systems conducted with the stabilized Finite Element Method (sFEM). Specifically, this work analyzes and quantifies the impact of the Streamline-Upwind-Petrov-Galerkin (SUPG) artificial diffusion scheme on (eigen)mode shapes and damping rates of the isentropic Linearized Euler Equations (LEE) in frequency space. The LEE (eigen)mode shapes are separated into acoustic and vortical perturbation components via a Helmholtz decomposition and their sensitivity on the employed stabilization scheme is investigated separately. The regions where numerical stabilization mainly acts on the perturbation types are identified and explanations for the observations are provided. A methodology is established, which allows the quantification of the impact of artificial diffusion on the acoustic field in terms of a damping rate. This non-physical damping rate is used to determine the physically meaningful, acoustic LEE damping rate, which is corrected by the contribution of artificial diffusion. Hence, the presented method eliminates a main shortcoming of LEE eigenfrequency analyses with the sFEM and, as a result, provides more accurate information on the stability of thermoacoustic systems.
AB - This paper seeks to advance linear stability analyses of thermoacoustic systems conducted with the stabilized Finite Element Method (sFEM). Specifically, this work analyzes and quantifies the impact of the Streamline-Upwind-Petrov-Galerkin (SUPG) artificial diffusion scheme on (eigen)mode shapes and damping rates of the isentropic Linearized Euler Equations (LEE) in frequency space. The LEE (eigen)mode shapes are separated into acoustic and vortical perturbation components via a Helmholtz decomposition and their sensitivity on the employed stabilization scheme is investigated separately. The regions where numerical stabilization mainly acts on the perturbation types are identified and explanations for the observations are provided. A methodology is established, which allows the quantification of the impact of artificial diffusion on the acoustic field in terms of a damping rate. This non-physical damping rate is used to determine the physically meaningful, acoustic LEE damping rate, which is corrected by the contribution of artificial diffusion. Hence, the presented method eliminates a main shortcoming of LEE eigenfrequency analyses with the sFEM and, as a result, provides more accurate information on the stability of thermoacoustic systems.
UR - http://www.scopus.com/inward/record.url?scp=85099777152&partnerID=8YFLogxK
U2 - 10.1115/GT2020-14475
DO - 10.1115/GT2020-14475
M3 - Conference contribution
AN - SCOPUS:85099777152
T3 - Proceedings of the ASME Turbo Expo
BT - Combustion, Fuels, and Emissions
PB - American Society of Mechanical Engineers (ASME)
T2 - ASME Turbo Expo 2020: Turbomachinery Technical Conference and Exposition, GT 2020
Y2 - 21 September 2020 through 25 September 2020
ER -