TY - JOUR
T1 - Impact of calibrating a low-cost capacitance-based soil moisture sensor on AquaCrop model performance
AU - Adla, Soham
AU - Bruckmaier, Felix
AU - Arias-Rodriguez, Leonardo F.
AU - Tripathi, Shivam
AU - Pande, Saket
AU - Disse, Markus
N1 - Publisher Copyright:
© 2024 The Authors
PY - 2024/2/27
Y1 - 2024/2/27
N2 - Sensor data and agro-hydrological modeling have been combined to improve irrigation management. Crop water models simulating crop growth and production in response to the soil-water environment need to be parsimonious in terms of structure, inputs and parameters to be applied in data scarce regions. Irrigation management using soil moisture sensors requires them to be site-calibrated, low-cost, and maintainable. Therefore, there is a need for parsimonious crop modeling combined with low-cost soil moisture sensing without losing predictive capability. This study calibrated the low-cost capacitance-based Spectrum Inc. SM100 soil moisture sensor using multiple least squares and machine learning models, with both laboratory and field data. The best calibration technique, field-based piece-wise linear regression (calibration r2 = 0.76, RMSE = 3.13 %, validation r2 = 0.67, RMSE = 4.57 %), was used to study the effect of sensor calibration on the performance of the FAO AquaCrop Open Source (AquaCrop-OS) model by calibrating its soil hydraulic parameters. This approach was tested during the wheat cropping season in 2018, in Kanpur (India), in the Indo-Gangetic plains, resulting in some best practices regarding sensor calibration being recommended. The soil moisture sensor was calibrated best in field conditions against a secondary standard sensor (UGT GmbH. SMT100) taken as a reference (r2 = 0.67, RMSE = 4.57 %), followed by laboratory calibration against gravimetric soil moisture using the dry-down (r2 = 0.66, RMSE = 5.26 %) and wet-up curves respectively (r2 = 0.62, RMSE = 6.29 %). Moreover, model overfitting with machine learning algorithms led to poor field validation performance. The soil moisture simulation of AquaCrop-OS improved significantly by incorporating raw reference sensor and calibrated low-cost sensor data. There were non-significant impacts on biomass simulation, but water productivity improved significantly. Notably, using raw low-cost sensor data to calibrate AquaCrop led to poorer performances than using the literature. Hence using literature values could save sensor costs without compromising model performance if sensor calibration was not possible. The results suggest the essentiality of calibrating low-cost soil moisture sensors for crop modeling calibration to improve crop water productivity.
AB - Sensor data and agro-hydrological modeling have been combined to improve irrigation management. Crop water models simulating crop growth and production in response to the soil-water environment need to be parsimonious in terms of structure, inputs and parameters to be applied in data scarce regions. Irrigation management using soil moisture sensors requires them to be site-calibrated, low-cost, and maintainable. Therefore, there is a need for parsimonious crop modeling combined with low-cost soil moisture sensing without losing predictive capability. This study calibrated the low-cost capacitance-based Spectrum Inc. SM100 soil moisture sensor using multiple least squares and machine learning models, with both laboratory and field data. The best calibration technique, field-based piece-wise linear regression (calibration r2 = 0.76, RMSE = 3.13 %, validation r2 = 0.67, RMSE = 4.57 %), was used to study the effect of sensor calibration on the performance of the FAO AquaCrop Open Source (AquaCrop-OS) model by calibrating its soil hydraulic parameters. This approach was tested during the wheat cropping season in 2018, in Kanpur (India), in the Indo-Gangetic plains, resulting in some best practices regarding sensor calibration being recommended. The soil moisture sensor was calibrated best in field conditions against a secondary standard sensor (UGT GmbH. SMT100) taken as a reference (r2 = 0.67, RMSE = 4.57 %), followed by laboratory calibration against gravimetric soil moisture using the dry-down (r2 = 0.66, RMSE = 5.26 %) and wet-up curves respectively (r2 = 0.62, RMSE = 6.29 %). Moreover, model overfitting with machine learning algorithms led to poor field validation performance. The soil moisture simulation of AquaCrop-OS improved significantly by incorporating raw reference sensor and calibrated low-cost sensor data. There were non-significant impacts on biomass simulation, but water productivity improved significantly. Notably, using raw low-cost sensor data to calibrate AquaCrop led to poorer performances than using the literature. Hence using literature values could save sensor costs without compromising model performance if sensor calibration was not possible. The results suggest the essentiality of calibrating low-cost soil moisture sensors for crop modeling calibration to improve crop water productivity.
KW - AquaCrop
KW - Calibration
KW - Crop modeling
KW - Low-cost soil moisture sensor
KW - Machine learning
KW - Water productivity
UR - http://www.scopus.com/inward/record.url?scp=85184026669&partnerID=8YFLogxK
U2 - 10.1016/j.jenvman.2024.120248
DO - 10.1016/j.jenvman.2024.120248
M3 - Article
AN - SCOPUS:85184026669
SN - 0301-4797
VL - 353
JO - Journal of Environmental Management
JF - Journal of Environmental Management
M1 - 120248
ER -