Immersive Interactive SAR Image Representation Using Non-negative Matrix Factorization

Mohammadreza Babaee, Xuejie Yu, Gerhard Rigoll, Mihai Datcu

Publikation: Beitrag in FachzeitschriftArtikelBegutachtung

6 Zitate (Scopus)

Abstract

Earth observation (EO) images clustering is a challenging problem in data mining, where each image is represented by a high-dimensional feature vector. However, the feature vectors might not be appropriate to express the semantic content of images, which eventually lead to poor results in clustering and classification. To tackle this problem, we propose an interactive approach to generate compact and informative features from images content. To this end, we utilize a 3-D interactive application to support user-images interactions. These interactions are used in the context of two novel nonnegative matrix factorization (NMF) algorithms to generate new features. We assess the quality of new features by applying k-means clustering on the generated features and compare the obtained clustering results with those achieved by original features. We perform experiments on a synthetic aperture radar (SAR) image dataset represented by different state-of-the-art features and demonstrate the effectiveness of the proposed method. Moreover, we propose a divide-and-conquer approach to cluster a massive amount of images using a small subset of interactions.

OriginalspracheEnglisch
Aufsatznummer7426732
Seiten (von - bis)2844-2853
Seitenumfang10
FachzeitschriftIEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing
Jahrgang9
Ausgabenummer7
DOIs
PublikationsstatusVeröffentlicht - Juli 2016

Fingerprint

Untersuchen Sie die Forschungsthemen von „Immersive Interactive SAR Image Representation Using Non-negative Matrix Factorization“. Zusammen bilden sie einen einzigartigen Fingerprint.

Dieses zitieren