Image segmentation with shape priors: Explicit versus implicit representations

Publikation: Beitrag in Buch/Bericht/KonferenzbandKapitelBegutachtung

6 Zitate (Scopus)

Abstract

Image segmentation is among the most studied problems in image understanding and computer vision. The goal of image segmentation is to partition the image plane into a set of meaningful regions. Here meaningful typically refers to a semantic partitioning where the computed regions correspond to individual objects in the observed scene. Unfortunately, generic purely low-level segmentation algorithms often do not provide the desired segmentation results, because the traditional lowlevel assumptions like intensity or texture homogeneity and strong edge contrast are not sufficient to separate objects in a scene. To overcome these limitations, researchers have proposed to impose prior knowledge into low-level segmentation methods. In the following, we will review methods which allow to impose knowledge about the shape of objects of interest into segmentation processes.

OriginalspracheEnglisch
TitelHandbook of Mathematical Methods in Imaging
UntertitelVolume 1, Second Edition
Herausgeber (Verlag)Springer New York
Seiten1909-1944
Seitenumfang36
ISBN (elektronisch)9781493907908
ISBN (Print)9781493907892
DOIs
PublikationsstatusVeröffentlicht - 1 Jan. 2015

Fingerprint

Untersuchen Sie die Forschungsthemen von „Image segmentation with shape priors: Explicit versus implicit representations“. Zusammen bilden sie einen einzigartigen Fingerprint.

Dieses zitieren