Image segmentation with adaptive sparse grids

Benjamin Peherstorfer, Julius Adorf, Dirk Pflüger, Hans Joachim Bungartz

Publikation: Beitrag in Buch/Bericht/KonferenzbandKonferenzbeitragBegutachtung

2 Zitate (Scopus)

Abstract

We present a novel adaptive sparse grid method for unsupervised image segmentation. The method is based on spectral clustering. The use of adaptive sparse grids achieves that the dimensions of the involved eigensystem do not depend on the number of pixels. In contrast to classical spectral clustering, our sparse-grid variant is therefore able to segment larger images. We evaluate the method on real-world images from the Berkeley Segmentation Dataset. The results indicate that images with 150,000 pixels can be segmented by solving an eigenvalue system of dimensions 500 x 500 instead of 150,000 x 150,000.

OriginalspracheEnglisch
TitelAI 2013
UntertitelAdvances in Artificial Intelligence - 26th Australasian Joint Conference, Proceedings
Seiten160-165
Seitenumfang6
DOIs
PublikationsstatusVeröffentlicht - 2013
Veranstaltung26th Australasian Joint Conference on Artificial Intelligence, AI 2013 - Dunedin, Niederlande
Dauer: 1 Dez. 20136 Dez. 2013

Publikationsreihe

NameLecture Notes in Computer Science (including subseries Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics)
Band8272 LNAI
ISSN (Print)0302-9743
ISSN (elektronisch)1611-3349

Konferenz

Konferenz26th Australasian Joint Conference on Artificial Intelligence, AI 2013
Land/GebietNiederlande
OrtDunedin
Zeitraum1/12/136/12/13

Fingerprint

Untersuchen Sie die Forschungsthemen von „Image segmentation with adaptive sparse grids“. Zusammen bilden sie einen einzigartigen Fingerprint.

Dieses zitieren