Identifying degradation patterns of lithium ion batteries from impedance spectroscopy using machine learning

Yunwei Zhang, Qiaochu Tang, Yao Zhang, Jiabin Wang, Ulrich Stimming, Alpha A. Lee

Publikation: Beitrag in FachzeitschriftArtikelBegutachtung

442 Zitate (Scopus)

Abstract

Forecasting the state of health and remaining useful life of Li-ion batteries is an unsolved challenge that limits technologies such as consumer electronics and electric vehicles. Here, we build an accurate battery forecasting system by combining electrochemical impedance spectroscopy (EIS)—a real-time, non-invasive and information-rich measurement that is hitherto underused in battery diagnosis—with Gaussian process machine learning. Over 20,000 EIS spectra of commercial Li-ion batteries are collected at different states of health, states of charge and temperatures—the largest dataset to our knowledge of its kind. Our Gaussian process model takes the entire spectrum as input, without further feature engineering, and automatically determines which spectral features predict degradation. Our model accurately predicts the remaining useful life, even without complete knowledge of past operating conditions of the battery. Our results demonstrate the value of EIS signals in battery management systems.

OriginalspracheEnglisch
Aufsatznummer1706
FachzeitschriftNature Communications
Jahrgang11
Ausgabenummer1
DOIs
PublikationsstatusVeröffentlicht - 1 Dez. 2020
Extern publiziertJa

Fingerprint

Untersuchen Sie die Forschungsthemen von „Identifying degradation patterns of lithium ion batteries from impedance spectroscopy using machine learning“. Zusammen bilden sie einen einzigartigen Fingerprint.

Dieses zitieren