Abstract
Zinc is essential for the structural and functional integrity of cells and plays a pivotal role in the control of gene expression. To identify genes with altered mRNA expression level after zinc depletion, we employed oligonucleotide arrays with ∼10,000 targets and used the human colon adenocarcinoma epithelial cell line HT-29 as a model. A low intracellular zinc concentration caused alterations in the steady-state mRNA levels of 309 genes at a threshold factor of 2.0. Northern blot analysis and/or real-time RT-PCR confirmed the array results for 12 of 14 selected targets. Genes identified as regulated based on microarray data encode mainly proteins involved in central pathways of intermediary metabolism (79 genes) including protein metabolism (21). We also identified five groups of genes important for basic cellular functions such as signaling (30), cell cycle control and growth (15), vesicular trafficking (15), cell-cell interaction (13), cytoskeleton (10) and transcription control (19). The latter group comprises several zinc finger-containing transcription factors of which the Kruppel-like factor 4 showed the most pronounced changes. Western blot analysis confirmed the increased expression level of this protein in cells grown under low zinc conditions. Our findings in a homogenous cell population demonstrate that the molecular mechanisms by which cellular functions are altered at a low zinc status, occur via pleiotropic effects on gene expression. In conclusion, the pattern of zinc-affected genes may represent a reference for further studies to define the zinc regulon in mammalian cells.
Originalsprache | Englisch |
---|---|
Seiten (von - bis) | 57-62 |
Seitenumfang | 6 |
Fachzeitschrift | Journal of Nutrition |
Jahrgang | 134 |
Ausgabenummer | 1 |
DOIs | |
Publikationsstatus | Veröffentlicht - Jan. 2004 |