IA-GCN: Interpretable Attention Based Graph Convolutional Network for Disease Prediction

Anees Kazi, Soroush Farghadani, Iman Aganj, Nassir Navab

Publikation: Beitrag in Buch/Bericht/KonferenzbandKonferenzbeitragBegutachtung

1 Zitat (Scopus)

Abstract

Interpretability in Graph Convolutional Networks (GCNs) has been explored to some extent in general in computer vision; yet, in the medical domain, it requires further examination. Most of the interpretability approaches for GCNs, especially in the medical domain, focus on interpreting the output of the model in a post-hoc fashion. In this paper, we propose an interpretable attention module (IAM) that explains the relevance of the input features to the classification task on a GNN Model. The model uses these interpretations to improve its performance. In a clinical scenario, such a model can assist the clinical experts in better decision-making for diagnosis and treatment planning. The main novelty lies in the IAM, which directly operates on input features. IAM learns the attention for each feature based on the unique interpretability-specific losses. We show the application of our model on two publicly available datasets, Tadpole and the UK Biobank (UKBB). For Tadpole we choose the task of disease classification, and for UKBB, age, and sex prediction. The proposed model achieves an increase in an average accuracy of 3.2% for Tadpole and 1.6% for UKBB sex and 2% for the UKBB age prediction task compared to the state-of-the-art. Further, we show exhaustive validation and clinical interpretation of our results.

OriginalspracheEnglisch
TitelMachine Learning in Medical Imaging - 14th International Workshop, MLMI 2023, Held in Conjunction with MICCAI 2023, Proceedings
Redakteure/-innenXiaohuan Cao, Xi Ouyang, Xuanang Xu, Islem Rekik, Zhiming Cui
Herausgeber (Verlag)Springer Science and Business Media Deutschland GmbH
Seiten382-392
Seitenumfang11
ISBN (Print)9783031456725
DOIs
PublikationsstatusVeröffentlicht - 2024
Veranstaltung14th International Workshop on Machine Learning in Medical Imaging, MLMI 2023 - Vancouver, Kanada
Dauer: 8 Okt. 20238 Okt. 2023

Publikationsreihe

NameLecture Notes in Computer Science (including subseries Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics)
Band14348 LNCS
ISSN (Print)0302-9743
ISSN (elektronisch)1611-3349

Konferenz

Konferenz14th International Workshop on Machine Learning in Medical Imaging, MLMI 2023
Land/GebietKanada
OrtVancouver
Zeitraum8/10/238/10/23

Fingerprint

Untersuchen Sie die Forschungsthemen von „IA-GCN: Interpretable Attention Based Graph Convolutional Network for Disease Prediction“. Zusammen bilden sie einen einzigartigen Fingerprint.

Dieses zitieren