Hybridizing sparse component analysis with genetic algorithms for microarray analysis

K. Stadlthanner, F. J. Theis, E. W. Lang, A. M. Tomé, C. G. Puntonet, J. M. Górriz

Publikation: Beitrag in FachzeitschriftArtikelBegutachtung

17 Zitate (Scopus)

Abstract

Nonnegative matrix factorization (NMF) has proven to be a useful tool for the analysis of nonnegative multivariate data. However, it is known not to lead to unique results when applied to blind source separation (BSS) problems. In this paper we present an extension of NMF capable of solving the BSS problem when the underlying sources are sufficiently sparse. In contrast to most well-established BSS methods, the devised algorithm is capable of solving the BSS problem in cases where the underlying sources are not independent or uncorrelated. As the proposed fitness function is discontinuous and possesses many local minima, we use a genetic algorithm for its minimization. Finally, we apply the devised algorithm to real world microarray data.

OriginalspracheEnglisch
Seiten (von - bis)2356-2376
Seitenumfang21
FachzeitschriftNeurocomputing
Jahrgang71
Ausgabenummer10-12
DOIs
PublikationsstatusVeröffentlicht - Juni 2008
Extern publiziertJa

Fingerprint

Untersuchen Sie die Forschungsthemen von „Hybridizing sparse component analysis with genetic algorithms for microarray analysis“. Zusammen bilden sie einen einzigartigen Fingerprint.

Dieses zitieren