Hybrid optimization of feedforward neural networks for handwritten character recognition

Publikation: Beitrag in FachzeitschriftKonferenzartikelBegutachtung

1 Zitat (Scopus)

Abstract

An extension of a feedforward neural network is presented. Although utilizing linear threshold functions and a boolean function in the second layer, signal processing within the neural network is real. After mapping input vectors onto a discretization of the input space, real valued features of the internal representation of pattern are extracted. A vectorquantizer assigns a class hypothesis to a pattern based on its extracted features and adequate reference vectors of all classes in the decision space of the output layer. Training consists of a combination of combinatorial and convex optimization. This work has been applied to a standard optical character recognition task. Results and comparison to alternative approaches are presented.

OriginalspracheEnglisch
Seiten (von - bis)147-150
Seitenumfang4
FachzeitschriftICASSP, IEEE International Conference on Acoustics, Speech and Signal Processing - Proceedings
Jahrgang1
PublikationsstatusVeröffentlicht - 1997
VeranstaltungProceedings of the 1997 IEEE International Conference on Acoustics, Speech, and Signal Processing, ICASSP. Part 1 (of 5) - Munich, Ger
Dauer: 21 Apr. 199724 Apr. 1997

Fingerprint

Untersuchen Sie die Forschungsthemen von „Hybrid optimization of feedforward neural networks for handwritten character recognition“. Zusammen bilden sie einen einzigartigen Fingerprint.

Dieses zitieren